Continuation of discrete breathers from infinity in a nonlinear model for DNA breathing

Abstract : We study the existence of discrete breathers (time-periodic and spatially localized oscillations) in a chain of coupled nonlinear oscillators modelling the breathing of DNA. We consider a modification of the Peyrard-Bishop model introduced by Peyrard et al. [Nonlinear analysis of the dynamics of DNA breathing, J. Biol. Phys. 35 (2009), 73-89], in which the reclosing of base pairs is hindered by an energy barrier. Using a new kind of continuation from infinity, we prove for weak couplings the existence of large amplitude and low frequency breathers oscillating around a localized equilibrium, for breather frequencies lying outside resonance zones. These results are completed by numerical continuation. For resonant frequencies (with one multiple belonging to the phonon band) we numerically obtain discrete breathers superposed on a small oscillatory tail.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger
Contributeur : Brigitte Bidégaray-Fesquet <>
Soumis le : lundi 2 septembre 2019 - 15:43:06
Dernière modification le : jeudi 17 octobre 2019 - 08:51:34


Fichiers produits par l'(les) auteur(s)



Guillaume James, Antoine Levitt, Cynthia Ferreira. Continuation of discrete breathers from infinity in a nonlinear model for DNA breathing. Applicable Analysis, Taylor & Francis, 2010, Mathematics of Nonlinear Lattices, 89 (9), pp.1447-1465. ⟨10.1080/00036810903437788⟩. ⟨hal-00765599⟩



Consultations de la notice


Téléchargements de fichiers