Learning a Gaussian Process Model on the Riemannian Manifold of Non-decreasing Distribution Functions

Abstract : In this work, we consider the problem of learning regression models from a finite set of functional objects. In particular, we introduce a novel framework to learn a Gaussian process model on the space of Strictly Non-decreasing Distribution Functions (SNDF). Gaussian processes (GPs) are commonly known to provide powerful tools for non-parametric regression and uncertainty estimation on vector spaces. On top of that, we define a Riemannian structure of the SNDF space and we learn a GP model indexed by SNDF. Such formulation enables to define an appropriate covariance function, extending the Matérn family of covariance functions. We also show how the full Gaussian process methodology, namely covariance parameter estimation and prediction, can be put into action on the SNDF space. The proposed method is tested using multiple simulations and validated on real-world data.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02276949
Contributeur : François Bachoc <>
Soumis le : mardi 3 septembre 2019 - 11:24:08
Dernière modification le : jeudi 17 octobre 2019 - 08:51:34

Fichiers

Chafik_et_al.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Chafik Samir, Jean-Michel Loubes, Anne-Françoise Yao, François Bachoc. Learning a Gaussian Process Model on the Riemannian Manifold of Non-decreasing Distribution Functions. 16th Pacific Rim International Conference on Artificial Intelligence, Aug 2019, Cuvu, Fiji. ⟨10.1007/978-3-030-29911-8_9⟩. ⟨hal-02276949⟩

Partager

Métriques

Consultations de la notice

22

Téléchargements de fichiers

61