A linear version of Dawson-Gärtner theorem -- Applications to Cramér's theory

Abstract : We prove a linear version of Dawson-Gärtner theorem: weak large deviation principles and the equality −s = p* between the negentropy and the Fenchel-Legendre transform of the pressure are preserved through linear projective limits. As a result, the equality −s = p* holds in great generality for empirical means of independent and identically distributed random variables (Cramér's theory), e.g. in any measurable normed space, and even in any projective limit of such spaces. Eventually, we give an original example where −s is different from p* and discuss the dual equality.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02279591
Contributeur : Pierre Petit <>
Soumis le : jeudi 5 septembre 2019 - 17:19:11
Dernière modification le : jeudi 17 octobre 2019 - 08:55:38

Fichiers

dg_lin.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02279591, version 1
  • ARXIV : 1909.02785

Citation

P Petit. A linear version of Dawson-Gärtner theorem -- Applications to Cramér's theory. 2019. ⟨hal-02279591⟩

Partager

Métriques

Consultations de la notice

10

Téléchargements de fichiers

15