Discrete transparent boundary conditions for the two-dimensional leap-frog scheme

Abstract : We develop a general strategy in order to implement (approximate) discrete transparent boundary conditions for finite difference approximations of the two-dimensional transport equation. The computational domain is a rectangle equipped with a Cartesian grid. For the two-dimensional leapfrog scheme, we explain why our strategy provides with explicit numerical boundary conditions on the four sides of the rectangle and why it does not require prescribing any condition at the four corners of the computational domain. The stability of the numerical boundary condition on each side of the rectangle is analyzed by means of the so-called normal mode analysis. Numerical investigations for the full problem on the rectangle show that strong instabilities may occur when coupling stable strategies on each side of the rectangle. Other coupling strategies yield promising results.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02280886
Contributeur : Christophe Besse <>
Soumis le : lundi 9 septembre 2019 - 13:04:20
Dernière modification le : jeudi 17 octobre 2019 - 08:51:59

Fichiers

2d-DTBC-0903.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02280886, version 1
  • ARXIV : 1909.04895

Citation

Christophe Besse, Jean-François Coulombel, Pascal Noble. Discrete transparent boundary conditions for the two-dimensional leap-frog scheme. 2019. ⟨hal-02280886⟩

Partager

Métriques

Consultations de la notice

31

Téléchargements de fichiers

49