Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Improving vehicle re‐identification using CNN latent spaces: Metrics comparison and track‐to‐track extension

Abstract : This paper addresses the problem of vehicle re-identification using distance comparison of images in CNN latent spaces. Firstly, we study the impact of the distance metrics, comparing performances obtained with different metrics: the minimal Euclidean distance (MED), the minimal cosine distance (MCD), and the residue of the sparse coding reconstruction (RSCR). These metrics are applied using features extracted from five different CNN architectures, namely ResNet18, AlexNet, VGG16, InceptionV3 and DenseNet201. We use the specific vehicle re-identification dataset VeRi to fine-tune these CNNs and evaluate results. In overall, independently of the CNN used, MCD outperforms MED, commonly used in the literature. These results are confirmed on other vehicle retrieval datasets. Secondly, we extend the state-of-the-art image-to-track process (I2TP) to a track-to-track process (T2TP). The three distance metrics are extended to measure distance between tracks, enabling T2TP. We compared T2TP with I2TP using the same CNN models. Results show that T2TP outperforms I2TP for MCD and RSCR. T2TP combining DenseNet201 and MCD-based metrics exhibits the best performances, outperforming the state-of-the-art I2TP-based models. Finally, experiments highlight two main results: i) the impact of metric choice in vehicle re-identification, and ii) T2TP improves the performances compared to I2TP, especially when coupled with MCD-based metrics.
Liste complète des métadonnées
Contributeur : Andre Peninou <>
Soumis le : lundi 29 mars 2021 - 10:48:59
Dernière modification le : mardi 4 mai 2021 - 16:07:57


Improving vehicle re‐identif...
Fichiers éditeurs autorisés sur une archive ouverte


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License



Geoffrey Roman Jimenez, Patrice Guyot, Thierry Malon, Sylvie Chambon, Vincent Charvillat, et al.. Improving vehicle re‐identification using CNN latent spaces: Metrics comparison and track‐to‐track extension. IET Computer Vision, IET, 2021, 15 (2), pp.85-98. ⟨10.1049/cvi2.12010⟩. ⟨hal-03126045⟩



Consultations de la notice


Téléchargements de fichiers