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ABSTRACT

The covariation is one of the possible dependence measures for variables where distribu-

tion is symmetric alpha-stable with parameter alpha between one and two. We introduce

a symmetrized and normalized version of the covariation which enables us to reveal some

unexpected dependence properties of stable variables.

1. INTRODUCTION

In many practical situations of interest in statistics, the observed data cannot be ad-

equately described by a Gaussian distribution. Usually in such cases a distribution with

heavier tails is needed, particularly in the fields of telecommunications and finance. From

a theoretical point of view, the class of stable distributions is the most satisfying heavy-tail

generalization. It contains the Gaussian distribution as a special case, and it retains at least

some of its properties. For example, it is infinitely divisible, linear combinations of stable

variables are still stable and the conditional expectation, granted that it exists, of a stable

variable X with respect to another variable Y is still a linear function of Y . Moreover an

extensive asymptotic theory has been developed (see Samorodnitsky and Taqqu (1)).
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A main problem with non-Gaussian models has been the complexity of calculations, but

recent developments of data processing techniques have made both model fitting with stable

distributions and simulation of stable variables practical. On the other hand, because of

the infinite variance of these distributions, the much applied correlation tool for assessing

dependence cannot be used. So, other dependence measures are needed using moments of

orders less than two.

Samorodnitsky and Taqqu (1) in chapter 4 of their book discuss several alternatives

that have been used. Most of the interest seems to center around the so-called covariation

measure. This measure was treated in the early papers by Miller (2) and Cambanis and Miller

(3). Since then there has been a number of papers with many of the results summed up in

Nikias and Shao (4). A recent alternative contribution is Pinkse (5) which introduced a non

parametric serial dependence measure with the help of the characteristic function. General

measures of dependence and resulting tests of independence are surveyed by Tjøstheim (6).

Further developments can be found in Hong (7) and Hong and White (8).

In this paper we will focus on dependence properties of linear combinations of stable vari-

ables. Our main tool is introduced in section 2. It is a normalized and symmetrized version

of the covariance measure. We use it to reveal some unexpected dependence properties in

section 3. For instance, it will be shown that linear combinations exist that display both

positive and negative dependence at the same time. Finally, in section 4, we present some

finite sample results for the new symmetrized covariation measure and compare it to some

other standard measures.

2. COVARIATION AND SYMMETRIC COVARIATION

We start by giving some basic properties of symmetric alpha-stable distributions.

Definition 1 A vector X = (X1, . . . , Xn) has a symmetric alpha-stable (SαS) distribution

if and only if (iff) its characteristic function ϕ is given by

∀ (t1, . . . , tn) ∈ IRn, ϕ(X1,...,Xn) (t1, . . . , tn) = exp

{

−
∫

Sn−1

|〈t, x〉|α dµSn−1 (x)

}
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µSn−1 is a symmetric measure, called the spectral measure, on the

Borel sets of the unit sphere Sn−1 =

{

(x1, . . . , xn) ∈ IRn /

n
∑

i=1

x2
i = 1

}

,

〈·, ·〉 represents the usual scalar product on IRn,

α ∈ ]0; 2] ; t = (t1, . . . , tn) ; x = (x1, . . . , xn) .

Definition 2 A real random variable X has a SαS distribution, with parameters (γ, α)

where γ > 0 is called the dispersion of X, iff its characteristic function is given by

∀t ∈ IR, ϕX (t) = exp {−γ |t|α} .

Remarks

1. If X is a SαS vector, then every component Xi is a SαS random variable with param-

eters (γXi
, α). We have

γXi
=

∫

Sn−1

|xi|α dµSn−1 (x) and ϕXi
(ti) = ϕ(X1,...,Xn) (0, . . . , 0, ti, 0 . . . , 0) .

2. The random vector X is a SαS random vector iff all linear combinations
∑n

j=1 ajXj is

a SαS random variable.

3. If X1 and X2 are two independent SαS random variables, then (X1, X2) is a SαS

random vector.

The following proposition follows directly from point 2 of the preceding remarks.

Proposition 3 Let X be a SαS random vector and M a m × n real matrix. If Y = MX,

then Y is a SαS random vector.

For the rest of the paper, we assume that α is greater than 1. The covariation generalizes

the covariance to the situation where there are no second moments.

Definition 4 Let (Y1, Y2) be a SαS random vector, the covariation between Y1 and Y2 is

equal to

[Y1, Y2]α =

∫

S1

y1y
〈α−1〉
2 dµS1 (y1, y2)
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where µS1 is the spectral measure on the unit sphere S1 and where we have used the notation

u〈v〉 = sign (u) · |u|v .

Moreover, the coefficient of covariation of Y1 on Y2, is the quantity:

{Y1, Y2}α =
[Y1, Y2]α
[Y2, Y2]α

.

For α = 2, [Y1, Y2]2 = 1
2
Cov (Y1, Y2). Note that [Y, Y ]α = γY .

Properties of the covariation are given in Samorodnitsky and Taqqu (1),pp. 63-64. Note

that if X and Y are two independent SαS random variables then [X, Y ]α = 0. Furthermore,

for (a, b) ∈ IR2, [aX, bY ]α = abα [X, Y ]α, from which it follows that for c 6= 0,

{cX, X}α =
[cX, X]α
[X, X]α

= c and {X, cX}α =
[X, cX]α
[cX, cX]α

=
1

c
.

The two preceding equalities demonstrate the well-known fact that the coefficient of covaria-

tion is not symmetric and is not bounded. Using theorem 4.1.2 of Samorodnitsky and Taqqu

(1),p. 175, we have for the conditional expectation

IE (Y2 |Y1) = {Y2, Y1}α Y1, (2.1)

so that in general IE (Y2 |Y1) 6= IE (Y1 |Y2). In the Gaussian case (α = 2) we also have

IE (Y2 |Y1) 6= IE (Y1 |Y2) unless Var(Y1) = Var(Y2). But the dependence is unambiguous in

the sense that ρ(Y1, Y2) = ρ(Y2, Y1) where ρ denotes ordinary correlation and the regression

line IE (Y1 |Y2) has a positive slope iff IE (Y2 |Y1) has a positive slope. It will be shown in

section 3 that for stable variables with α < 2, the dependence is ambiguous. It is possible to

find examples where the slope of IE (Y2 |Y1) is positive ({Y2, Y1}α > 0), whereas the slope of

IE (Y1 |Y2) is negative ({Y1, Y2}α < 0). An example is given in the following scatter diagram.
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Figure 1: Plot of 50 realizations of a bivariate SαS random vector with α = 1.5. The

theoretical regression line IE (Y1 |Y2) and IE (Y2 |Y1) are drawn in. This example comes from

the system (3.1) with the following parameters: γX1
= 3; γX2

= 2; a1 = 2(4/3); a2 = 1; a3 =

1; a4 = −3(4/3).
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An important instrument needed to derive the results of the next section is the symmetric

coefficient of covariation:

Definition 5 Let (Y1, Y2) be a SαS random vector. The symmetric coefficient of co-

variation between Y1 and Y2 is equal to

Corrα (Y1, Y2) = {Y1, Y2}α {Y2, Y1}α =
[Y1, Y2]α [Y2, Y1]α
[Y1, Y1]α [Y2, Y2]α

. (2.2)
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In the Gaussian case (for α = 2), Corrα (Y1, Y2) = ρ2 (Y1, Y2), so that the symmetric coef-

ficient of covariation is only measuring the magnitude of the dependence not its direction.

One would perhaps expect that Corrα (Y1, Y2) > 0 also for α < 2, but it turns out that we

may have Corrα (Y1, Y2) < 0, meaning that [Y1, Y2]α and [Y2, Y1]α may have different signs,

one indicating positive dependence, the other negative. Hence Corrα (Y1, Y2) does not only

have the capability of measuring the strength of what we may call concordant dependence,

but also the degree of disconcordant dependence between two variables Y1 and Y2.

Before demonstrating this we show that Corrα (Y1, Y2) is bounded, taking values between

-1 and 1.

Proposition 6 Let (Y1, Y2) be a SαS random vector. We have

1- |Corrα (Y1, Y2)| 6 1.

2- If Y1 and Y2 are two independent SαS random variables, then

Corrα (Y1, Y2) = 0.

PROOF

1- We know that (see Samorodnitsky and Taqqu (1), Property 2.8.4, p.96)

|[Y1, Y2]α| 6 ‖Y1‖α ‖Y2‖α−1
α ,

and |[Y2, Y1]α| 6 ‖Y2‖α ‖Y1‖α−1
α where ‖U‖α = ([U, U ]α)1/α

.

So |[Y1, Y2]α| × |[Y2, Y1]α| 6 ‖Y1‖α ‖Y2‖α−1
α × ‖Y2‖α ‖Y1‖α−1

α

which entails that

∣

∣

∣

∣

[Y1, Y2]α [Y2, Y1]α
[Y1, Y1]α [Y2, Y2]α

∣

∣

∣

∣

6 1.

2- We know that [Y1, Y2]α is equal to zero. Because the denominator is different from 0, we

obtain Corrα (Y1, Y2) =
[Y1, Y2]α [Y2, Y1]α
[Y1, Y1]α [Y2, Y2]α

= 0 .

�

A value of Corrα (Y1, Y2) = −1 will indicate a very high degree of disconcordance in the

dependence relationship between Y1 and Y2. It will be seen next that such a value is possible

as a limiting case.
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3. SOME UNEXPECTED DEPENDENCE PROPERTIES OF LINEAR COMBINATIONS

OF STABLE VARIABLES

Let X1 and X2 be independent SαS variables with 1 < α 6 2 and let

Y1 = a1X1 + a2X2 and Y2 = a3X1 + a4X2 . (3.1)

In the Gaussian case (α = 2), we have

IE (Y1Y2) = a1a3 IE
(

X2
1

)

+ a2a4 IE
(

X2
2

)

+ (a1a4 + a2a3) IE (X1X2) .

With no restriction we assume that IE (X2
1 ) = IE (X2

2 ). It is seen that Y1 and Y2 are indepen-

dent iff a1a3 = −a2a4. In this case, IE (Y1 |Y2) = IE (Y2 |Y1) = 0. However, as will be seen

in the next proposition, such linear combinations in general yields Corrα (Y1, Y2) < 0. By

(2.1) and (2.2), this means that if Y2 increases with Y1 in the regression of Y2 on Y1, then Y1

decreases with increasing Y2 in the regression of Y1 on Y2. Again, mainly to ease notation,

we assume [X1, X1]α = γX1
= γX2

= [X2, X2]α, which corresponds to IE (X2
1 ) = IE (X2

2 ) in

the Gaussian case.

Proposition 7 Consider the system (3.1) for 1 < α 6 2. Then

Corrα (Y1, Y2) =
a1a3 sign (a1a3) |a1a3|α−1 + a2a4 sign (a2a4) |a2a4|α−1

(|a3|α + |a4|α) (|a1|α + |a2|α)

+
a1a4 sign (a2a3) |a2a3|α−1 + a2a3 sign (a1a4) |a1a4|α−1

(|a3|α + |a4|α) (|a1|α + |a2|α)
. (3.2)

If a1a3 = −a2a4, this simplifies to

Corrα (Y1, Y2) = −
(a1a3)

2
{

|a2a3|
α

2
−1 − |a1a4|

α

2
−1
}2

(|a1|α + |a2|α) (|a3|α + |a4|α)
(3.3)

which is negative.

PROOF

Using independence between X1 and X2 in (3.1), we have

Corrα (Y1, Y2) =
a1a

〈α−1〉
3 + a2a

〈α−1〉
4

|a3|α + |a4|α
× a3a

〈α−1〉
1 + a4a

〈α−1〉
2

|a1|α + |a2|α
.
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Using the definition of u〈v〉 (Definition 4, page 3), we obtain (3.2). Inserting a1a3 = −a2a4,

we have:

a1a3 sign (a1a3) |a1a3|α−1 + a2a4 sign (a2a4) |a2a4|α−1 = 2 |a1|α |a3|α

= 2 |a1|
α

2 |a2|
α

2 |a3|
α

2 |a4|
α

2 .

Moreover,

a1a4 sign (a2a3) |a2a3|α−1 = sign (a1a2a3a4) |a1| |a4| |a2|α−1 |a3|α−1

= − |a1| |a4| |a2|α−1 |a3|α−1
,

where sign (a1a2a3a4) = −1 because a1a3 = −a2a4. Similarly, we have

a2a3 sign (a1a4) |a1a4|α−1 = − |a2| |a3| |a1|α−1 |a4|α−1
.

Inserted in (3.2), this yields

Corrα (Y1, Y2) =
2 |a1|

α

2 |a2|
α

2 |a3|
α

2 |a4|
α

2

(|a3|α + |a4|α) (|a1|α + |a2|α)

− |a1| |a4| |a2|α−1 |a3|α−1 + |a2| |a3| |a1|α−1 |a4|α−1

(|a3|α + |a4|α) (|a1|α + |a2|α)
,

Corrα (Y1, Y2) =
− |a1a2a3a4|

(

|a2a3|α−2 − 2 |a2a3|
α

2
−1 |a1a4|

α

2
−1 + |a1a4|α−2

)

(|a3|α + |a4|α) (|a1|α + |a2|α)

from which (3.3) follows by setting |a1a3| = |a2a4|.
�

It is seen from (3.3) that once a1a3 = −a2a4 holds, Corrα (Y1, Y2) = 0 if α = 2 irrespective

of the values of a1, a2, a3, a4. This is of course the Gaussian independence case. We have

Corrα = 0 also if one of the ai-s is equal to zero or if |a2a3| = |a1a4|. The latter case does not

imply independence for α < 2 (cf Samorodnitsky and Taqqu (1), Proposition 2.9.5, p.102).

In fact it follows from this proposition that for the system (3.1) we cannot have independence

between Y1 and Y2 for α < 2 if a1a2a3a4 6= 0.

It is possible to obtain a maximum case of ambiguity in the dependence relationship

between Y1 and Y2 in that Corrα (Y1, Y2) → −1 as α → 1, a1 = a4 → 0 and |a3| = |a2|.
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In this limiting case, the regression lines IE (Y2 |Y1) and IE (Y1 |Y2) are orthogonal to each

other.

It is fully possible to obtain Corrα (Y1, Y2) < 0 also when the condition a1a3 = −a2a4

does not hold. One can also say something about how often this will occur. To see this,

rewrite Corrα (Y1, Y2) as

Corrα (Y1, Y2) =

(

|a1| |a3|α−1 sign (a1a3) + |a2| |a4|α−1 sign (a2a4)

|a3|α + |a4|α
)

×
(

|a3| |a1|α−1 sign (a1a3) + |a4| |a2|α−1 sign (a2a4)

|a1|α + |a2|α
)

.

Next, note that there are four possible combinations for the sign (a1a3) and sign (a2a4).

(i) sign (a1a3) = sign (a2a4) = +1,

(ii) sign (a1a3) = sign (a2a4) = −1,

(iii) sign (a1a3) = +1; sign (a2a4) = −1,

(iv) sign (a1a3) = −1; sign (a2a4) = +1.

In situations (i) and (ii), we have

Corrα (Y1, Y2) =

(

|a1| |a3|α−1 + |a2| |a4|α−1) (|a3| |a1|α−1 + |a4| |a2|α−1)

(|a3|α + |a4|α) (|a1|α + |a2|α)

which is positive, whereas in situations (iii) and (iv), we have

Corrα (Y1, Y2) =

(

|a1| |a3|α−1 − |a2| |a4|α−1) (|a3| |a1|α−1 − |a4| |a2|α−1)

(|a3|α + |a4|α) (|a1|α + |a2|α)
.

It is seen that the last expression can be negative as soon as α < 2.

If we let α → 1, possibilities (i) and (ii) mean that Corrα (Y1, Y2) → 1. On the other

hand, possibilities (iii) and (iv) both imply

Corrα (Y1, Y2) −→
(|a1| − |a2|) (|a3| − |a4|)
(|a3| + |a4|) (|a1| + |a2|)

.

Thus if the coefficients are drawn at random from uniform distributions on [−1; 1], say, then

in the long run 50% will give Corrα (Y1, Y2) ≈ 1, which is the greatest possible value of the
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symmetric coefficient of covariation. The remaining 50% will be approximately symmetrically

distributed around zero, i.e. about 25% will result in an ambiguous dependence relationship.

This is confirmed in the four simulation plots in Figure 2.

Figure 2: Histogram of 5000 symmetric coefficients of covariation for system (3.1) with

different values of α. The ai-s have been drawn independently from uniform distribution on

[−1, 1].
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(d) α = 1.01

From the above expressions, it is easy to find values a1, a2, a3, a4 for which Corrα (Y1, Y2) =

0. Moreover, we can also find values where {Y1, Y2}α = 0 and {Y2, Y1}α 6= 0. For α < 2
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neither of these examples would in general imply independence due to Samorodnitsky and

Taqqu (1), Proposition 2.9.5, p.102.

One can also ask the question as to when Corrα (Y1, Y2) = 1.

Proposition 8 Consider the system (3.1) for 1 < α 6 2. Then

Corrα (Y1, Y2) = 1 ⇐⇒ a1a4 = a2a3 .

PROOF

By (3.2), we have

Corrα (Y1, Y2) =
|a1a3|α + |a2a4|α + sign (a1a2a3a4)

(

|a1a4| |a2a3|α−1 + |a2a3| |a1a4|α−1)

(|a3|α + |a4|α) (|a1|α + |a2|α)
.

Hence, Corrα (Y1, Y2) = 1 iff

sign (a1a2a3a4)
(

|a1a4| |a2a3|α−1 + |a2a3| |a1a4|α−1) = |a1a4|α + |a2a3|α . (3.4)

At this point, there are two cases.

First case, sign(a1a2a3a4) = 0; then first we can take a1 = 0. Inserting in the preceding

equation, we have

|a2a3|α = 0 ⇒ a2a3 = 0.

In the same way, we have the three following implications

a3 = 0 ⇒ a1a4 = 0,

a2 = 0 ⇒ a1a4 = 0,

a4 = 0 ⇒ a2a3 = 0, and so, we have Corrα (Y1, Y2) = 1 ⇔ a1a4 = a2a3.

Second case, sign(a1a2a3a4) 6= 0; then equation (3.4) is equivalent to

[|a1a4| − sign (a1a2a3a4) |a2a3|]
[

|a1a4|α−1 − sign (a1a2a3a4) |a2a3|α−1] = 0 .

If sign(a1a2a3a4) = −1, then there is no solution.

If sign(a1a2a3a4) = +1, then a1a4 = a2a3.

�
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In the Gaussian case, ρ2 (Y1, Y2) = Corrα (Y1, Y2) = 1 is equivalent to Y1 = kY2 for some

constant k. In the general case for 1 < α < 2, it is easily seen from proposition 8 that if

X1 6= 0 then Corrα (Y1, Y2) = 1 is equivalent to a4Y1 = a2Y2, again Y1 being a multiple of Y2.

4. A COMPARISON OF DEPENDENCE MEASURES

We close this paper by examining some finite sample properties of the symmetric covaria-

tion Corrα (Y1, Y2) and comparing to other dependence measures for stable variables, namely

the covariation {Y1, Y2}α and two rank-based measures.

4.1. Other dependence measures

We consider two rank-based measures of dependence: the Spearman and the van der

Waerden rank correlation coefficients.

Definition 9 Let (X1, . . . , Xn) be n real random variables. The associated vector of ranks,

(R1, . . . , Rn) is defined by

∀i ∈ [[1; n]], Ri = 1 +

n
∑

j=1

1l]0;+∞[ (Xi − Xj) .

Suppose that (X1, Y1) , . . . , (Xn, Yn) is a sample. If we associate to X (resp. Y ) the vector

of ranks (Ri)i=1,...,n (resp. (Si)i=1,...,n), we calculate two measures of dependence.

Definition 10 With the preceding notations, the Spearman correlation coefficient rS

and the van der Waerden correlation coefficient rW are given by

rS = 1 − 6

n (n2 − 1)

n
∑

i=1

(Ri − Si)
2
,

rW =

n
∑

i=1

Φ−1

(

Ri

n + 1

)

Φ−1

(

Si

n + 1

)

n
∑

i=1

[

Φ−1

(

i

n + 1

)]2
,

where Φ−1 is the inverse cumulative distribution function of a standard normal variable.
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These coefficients exist independently of the existence of any moments. So it is tempting

to use them as a measure of dependence for alpha stable random variables. In particular,

we have the following result.

Proposition 11 Under the hypothesis of independence of X and Y, we have the asymptotic

result

√
n − 1 rS

L−→
n→+∞

N (0; 1) ,

√
n − 1 rW

L−→
n→+∞

N (0; 1) ,

where
L−→ denotes convergence in distribution.

4.2. Simulations

We will compare the new measure Corrα (Y1, Y2) to the other measures by simulations.

We recall an important property of the coefficient of covariation.

Proposition 12 Let (Y1, Y2) be a SαS random vector with α > 1, we have for all 1 6 p < α,

{Y1, Y2}α =
[Y1, Y2]α
[Y2, Y2]α

=
IE
[

Y1Y
〈p−1〉
2

]

IE |Y2|p
.

Samorodnitsky and Taqqu (1), pp. 94-95, gave the proof of this result for 1 < p < α.

Following the same lines as Samorodnitsky and Taqqu, the property is easily obtained for

p = 1. Note that this last result is used by several authors, such as Nikias and Shao (4),

p.47, equation (4.4), or Gallagher (9), p.382, equation (1.5).

Taking p = 1 in the preceding equation leads to a very convenient estimator of {Y1, Y2}α.

Let (Y1,i)16i6n and (Y2,i)16i6n be two vectors of realizations of Y1 and Y2. To estimate

Corrα (Y1, Y2) , we used the following quantity

Ĉorrα (Y1, Y2) =













n
∑

i=1

Y1,i sign (Y2,i)

n
∑

i=1

|Y2,i|

























n
∑

i=1

Y2,i sign (Y1,i)

n
∑

i=1

|Y1,i|












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which is the product of the estimator of the covariation {Y1, Y2}α by the estimator of the

covariation {Y2, Y1}α .

The algorithm of Chambers et al. (10) is used to simulate SαS independent random

variables.

We simulated 500 realizations of X1 and X2, with the same dispersion γX1
= γX2

= 1.

Then, we calculated the different measures of dependence between Y1 and Y2 generated by

(3.1). We made 100 replications. In Tables 1 and 2 there are three types of cells:

1. with a single value in the cell, it represents the theoretical value of the dependence mea-

sure (respectively the coefficient of covariation of Y1 on Y2, the coefficient of covariation

of Y2 on Y1 and the symmetric coefficient of covariation between Y1 and Y2);

2. with two values; these two numbers represent the mean (upper value in the cell) and

the standard deviation (lower value in the cell) of the 100-sample dependence measures

(respectively the Spearman correlation coefficient and the van der Waerden correlation

coefficient);

3. with three values; they represent the mean (upper value in the cell), the standard

deviation (center value in the cell) and the squared error (lower value in the cell) of the

100-sample dependence measures (respectively the coefficient of covariation of Y1 on

Y2, the coefficient of covariation of Y2 on Y1 and the symmetric coefficient of covariation

between Y1 and Y2).

We only study two sets of the four parameters a1, a2, a3 and a4. For the first case, shown in

Table 1, we have independence between Y1 and Y2. In the second case, shown in Table 2, the

parameters were drawn at random from uniform distributions, resulting in a1 = 0.09, a2 =

0.53, a3 = −0.77, a4 = −0.88.

We recall that for model (3.1), we have

{Y1, Y2}α =
a1a

〈α−1〉
3 + a2a

〈α−1〉
4

|a3|α + |a4|α
.
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In Table 1, we see that the sample coefficient of covariation has a much bigger dispersion

than the other measures when α goes to 1. Both the bias and standard error vary with α.

If one looks at the squared error, none of the criteria dominates all of the others.

For the Table 2 we remark:

1. The absolute theoretical value of {Y1, Y2}α decreases as α goes to 1 whereas the absolute

theoretical value of {Y2, Y1}α increases. It seems to be another drawback of this measure

of dependence.

2. In the Gaussian case, the dependence between Y1 and Y2 is negative. The direction of

dependence is detected by the two rank-based coefficients of correlation and {Y1, Y2}α

but not of course by the symmetric coefficient of covariation.

3. Even the distribution-free, rank-based coefficients of correlation vary when alpha tends

to 1. This means that there is a possible change in the dependence structure for alpha

close to 1.

We made a number of additional simulations, with different sets of parameters (a1, a2, a3, a4)

and different dispersions (γX1
, γX2

) . They gave similar results: the rank-based coefficients of

correlation and the symmetric coefficient of covariation appear to be more precise in terms

of squared error.
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Table I: Theoretical and estimated values of dependence measures, and rank-based

coefficients of correlation for: a1 = 1; a2 = 0; a3 = 0; a4 = 1.

α 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

{Y1, Y2}α 0 0 0 0 0 0 0 0 0 0

̂{Y1, Y2}α 0.0003
0.0575
0.0033

−0.0029
0.0628
0.0040

0.0092
0.0767
0.0060

−0.0013
0.1369
0.0187

0.0095
0.1129
0.0128

0.0279
0.2066
0.0434

−0.0090
0.3002
0.0902

−0.0288
0.3982
0.1594

−0.2753
3.5253
12.5036

0.0537
0.5525
0.3081

{Y2, Y1}α 0 0 0 0 0 0 0 0 0 0

̂{Y2, Y1}α 0.0046
0.0571
0.0033

−0.0098
0.0628
0.0040

0.0049
0.0938
0.0088

−0.0020
0.1027
0.0106

−0.0469
0.3834
0.1492

0.0064
0.1850
0.0343

−0.0169
0.1561
0.0246

−0.0483
1.1559
1.3383

−0.1333
0.9459
0.9125

−0.0061
0.8835
0.7806

Corrα 0 0 0 0 0 0 0 0 0 0

Ĉorrα 0.0021
0.0029
0.0001

0.0021
0.0039
0.0001

0.0024
0.0070
0.0001

0.0021
0.0100
0.0001

0.0016
0.0107
0.0001

0.0045
0.0195
0.0004

0.0049
0.0213
0.0005

−0.0014
0.0301
0.0009

0.0013
0.0702
0.0049

−0.0041
0.0898
0.0081

rS 0.0006
0.0446

−0.0048
0.0460

0.0058
0.0525

0.0017
0.0423

0.0046
0.0447

0.0009
0.0451

−0.0014
0.0448

−0.0044
0.0368

−0.0084
0.0443

0.0005
0.0391

rW −0.0010
0.0471

−0.0036
0.0438

0.0053
0.0500

−0.0007
0.0422

0.0029
0.0433

−0.0010
0.0456

−0.0019
0.0469

−0.0036
0.0375

−0.0094
0.0460

0.0009
0.0393

Table II: Theoretical and estimated values of dependence measures, and rank-based

coefficients of correlation for: a1 = 0.09; a2 = 0.53; a3 = −0.77; a4 = −0.88.

α 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

{Y1, Y2}α −0.3918−0.3902−0.3886−0.3870−0.3854−0.3838−0.3822−0.3806−0.3790−0.3774

̂{Y1, Y2}α −0.3909
0.0125
0.0002

−0.3921
0.0186
0.0004

−0.3891
0.0192
0.0004

−0.3866
0.0201
0.0004

−0.3890
0.0267
0.0007

−0.3806
0.0284
0.0008

−0.3814
0.0377
0.0014

−0.3766
0.0447
0.0020

−0.3747
0.0586
0.0034

−0.3647
0.0743
0.0057

{Y2, Y1}α −1.8536−1.8899−1.9326−1.9830−2.0421−2.1113−2.1921−2.2858−2.3943−2.5189

̂{Y2, Y1}α −1.8620
0.0584
0.0035

−1.8870
0.0815
0.0066

−1.9343
0.1090
0.0119

−1.9705
0.0928
0.0088

−2.0265
0.1225
0.0153

−2.1182
0.2159
0.0467

−2.1845
0.2170
0.0472

−2.2987
0.4982
0.2484

−2.3994
0.5074
0.2575

−2.6258
0.8516
0.7367

Corrα 0.7262 0.7374 0.7510 0.7674 0.7870 0.8103 0.8378 0.8700 0.9074 0.9506

Ĉorrα 0.7278
0.0302
0.0009

0.7392
0.0347
0.0012

0.7513
0.0320
0.0010

0.7607
0.0322
0.0011

0.7859
0.0353
0.0012

0.8012
0.0338
0.0012

0.8261
0.0335
0.0013

0.8472
0.0371
0.0019

0.8736
0.0402
0.0028

0.9035
0.0381
0.0037

rS −0.8412
0.0139

−0.8412
0.0145

−0.8408
0.0151

−0.8420
0.0149

−0.8457
0.0165

−0.8473
0.0166

−0.8494
0.0172

−0.8571
0.0161

−0.8607
0.0184

−0.8665
0.0164

rW −0.8505
0.0120

−0.8520
0.0133

−0.8530
0.0146

−0.8548
0.0138

−0.8598
0.0145

−0.8608
0.0163

−0.8650
0.0160

−0.8726
0.0153

−0.8780
0.0159

−0.8840
0.0147

16



Bibliography

(1) Samorodnitsky G.; Taqqu M. S. Stable non-Gaussian random processes. Stochastic

Modeling. Chapman & Hall, New York-London, New York, 1994.

(2) Miller G. Properties of certain symmetric stable distributions. Journal of Multivariate

Analysis, 1978, 8(3):346–360.

(3) Cambanis S.; Miller G. Linear problems in pth order and stable processes. SIAM

Journal on Applied Mathematics, 1981, 41(1):43–69.

(4) Nikias C.; Shao M. Signal Processing with Alpha-Stable Distributions and Applications.

Wiley-Interscience, 1995.

(5) Pinkse J. A consistent nonparametric test for serial independence. Journal of Econo-

metrics, 1998, 84(2):205–231.

(6) Tjøstheim D. Measures of dependence and tests of independence. Statistics. A Journal

of Theoretical and Applied Statistics, 1996, 28(3):249–284.

(7) Hong Y. Testing for pairwise serial independence via the empirical distribution function.

Journal of the Royal Statistical Society. Series B. Statistical Methodology, 1998, 60(2):

429–453.

(8) Hong Y.; White H. Asymptotic distribution theory for nonparametric entropy measures

of serial dependence. Preprint, 2003.

(9) Gallagher C. M. A method for fitting stable autoregressive models using the autoco-

variation function. Statistics & Probability Letters, 2001, 53(4):381–390.

(10) Chambers J. M.; Mallows C. L.; Stuck B. W. A method for simulating stable random

variables. Journal of the American Statistical Association, 1976, 71(354):340–344.

17


