Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India - Archive ouverte HAL Access content directly
Journal Articles Remote Sensing Year : 2017

Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India

(1) , (2) , (1) , (3) , (1) , (1) , (1) , (4) , (5) , (3) , (6) , (6) , (7) , (6) , (1)
1
2
3
4
5
6
7
Mehdi Saqalli
Yann H. Kerr
  • Function : Author
  • PersonId : 1093835

Abstract

range from 49.5 ± 0.78 mm (1.5% uncertainty) in Rabi 2016, and 44.9 ± 2.9 mm (6.5% uncertainty) in the Kharif season, to 226.2 ± 5.8 mm (2.5% uncertainty) in Rabi 2017. This variation must be related to groundwater recharge estimates that range from 10 mm to 160 mm•yr −1 in the Hyderabad region. These dynamic agro-hydrological variables estimated from Sentinel remote sensing data are crucial in calibrating runoff, aquifer recharge, water use and evapotranspiration for the spatially distributed agro-hydrological models employed to quantify the impacts of agriculture on water resources.
Fichier principal
Vignette du fichier
remotesensing-09-01119.pdf (5.73 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-01683534 , version 1 (12-01-2021)

Licence

Attribution - NonCommercial - CC BY 4.0

Identifiers

Cite

Sylvain Ferrant, Adrien Selles, Michel Le Page, Pierre-Alexis Herrault, Charlotte Pelletier, et al.. Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India. Remote Sensing, 2017, 9 (11), ⟨10.3390/rs9111119⟩. ⟨hal-01683534⟩
608 View
88 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More