Climate Change and social transformations in the past (12ka BP): from field data acquisition towards socio-ecological modeling

Laurent Lespez, Maria-Angela Bassetti, Jean-François Berger, Jean-Michel Carozza, Laurent Carozza, Nathalie Combourieu Nebout, Laurent Dezileau, Arthur Glais, Matthieu Ghilardi, Catherine Kuzucuoglu, et al.

To cite this version:
Laurent Lespez, Maria-Angela Bassetti, Jean-François Berger, Jean-Michel Carozza, Laurent Carozza, et al.. Climate Change and social transformations in the past (12ka BP): from field data acquisition towards socio-ecological modeling. Conférence MISTRALS PALEOMEX, Oct 2017, Montpellier, France. 2016. hal-01683548

HAL Id: hal-01683548
https://hal-univ-tlse2.archives-ouvertes.fr/hal-01683548

Submitted on 18 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Climate Change and social transformations in the past (12ka BP): from field data acquisition towards socio-ecological modeling

Laurent Lespérance, Maria-Angela Basseti, Jean-François Berger, Jean-Michel Carozza, Laurent Carozza, Nathalie Combournieu-Nebout, Laurent Dezileau, Arthur Glaizé, Matthieu Ghilardi, Catherine Kuzucuoglu, Didire Peyron, Pierre Sabatier, Mehdi Saqafi, Boris Vannière, Marie-Alexandrine Sicre, Bassem Sabali and Paleomex team

1. UCR-IA New CWS 2551 - Université Paris Est Créteil et Université Paris 12, UMR 8218 : EEFOM (UMR CNRS 5551), 2. EFSIN (UMR CNRS 5551), 3. EESIN (UMR CNRS 5551) - Université Paris 13 - Sorbonne Paris Cité, 4. LIEGE-ULiège CRMT-CNRS – Université de Liège, 5. GEODO-UMR CNRS 5102 - Université Toulouse 3 - Jean Jaurès - 6. Géosciences Montpellier (UMR CNRS 5133), 7. LENS-CAG-ULM-CNRS-UM 6556 Université de Caen-Normandie, 8. CIGEO-UCLouvain: CNRS - Université Libre de Bruxelles, 9. ISCM Montpellier, 10. Laboratoire EDISYM - UMR CNRS 5204, Université Savoie Mont Blanc - 11. Chrono-Environnement UMR CNRS 6249, Université de Franche-Comté, Besançon, 12. LOCAN, pour l'Office national des forêts, 13. UMR SEDER, Université de Vincennes, St-Denis, 14. UMR CNRS 7330, Poitiers, 15. UMR CNRS 8591 Caen, 16. UMR SEDER - Normandie, 17. UMR SEDER - Normandie.

Objectives and challenges

Climatic trends in Mediterranean areas during the Holocene (from 12 ka BP)

Definition of the spatial and temporal variability of the Rapid Climate Changes (RCCs)

⇒ Climate change and impact on cultural and political dynamic?

- Neolithic (9.2, 8.2 and 6.5 ka BP)
- Bronze Age (4.2 ka cal BP)
- Final Bronze Age and Historical periods (3.2-2.8 and 1.3 et 0.7 ka cal BP)

Methods: 4 transects – multiproxy analyses

- Paleoexem in the Lion’s Gulf

Improve climate and environmental change: seesaw across the Mediterranean basin

Conceptual model of Climate/Environment/Society interactions

4.2 ka BP climatic event and settlement pattern changes from the Late Neolithic to the Early Bronze Age in western Mediterranean:

- Effects of RCC lasting 3-4 centuries around the 4.2 ka BP event (e.g. 2.2-2.0 ka BC) in the lake, fluvial and soil records
- A temporal impatience structure with 2 wet periods in Southern France
- Changes in the human settlement system around 2.02–2.20 ka BC
- In lowland areas, the number of settlements decreased significantly along the river systems during a period of very high hydrosedimentary discharges, dryness, and fire activity
- Environmental changes (glacial retreat) permitted the exploration of copper mines on mountain areas
- High resolution analyses of lake and fluvial sequences (e.g. 8.2 impregnation in Berger et al. (2016))
- Socio-political changes: cultural areas, settlement, political changes (e.g. Carozza et al., 2015; Lespérance et al., 2016a, b)

Paleomex in the Lion’s Gulf

Long marine sequences....

- Analyses of high pollen and fire signature series for high resolution climate changes analyses (e.g. modern analogs – Peyron et al., 2003 - Vannière et al., 2005)
- High resolution analyses of lake and fluvial sequences (e.g. 8.2 impregnation in Berger et al. (2016))
- Socio-political changes: cultural areas, settlement, political changes (e.g. Carozza et al., 2015; Lespérance et al., 2016a, b)

Modeling Climate/Environment/Society interactions

Dynamic and spatially explicit modeling is the only way for combining bioclimatic and socio-ecological models such as Palaeo, site available today, with archaologically and socio-ecologically based hypotheses in the functioning of the Neolithic societies.

Answer:

A Paleoenvironmentalists provide climate and landscape reconstructions with century-scale temporal resolution whereas, to understand the consequences on rural populations, one should translate these data into signals of human settlement patterns.

Archaeologists provide site-specific, habitat and activity descriptions for specific time periods while, to extend such reconstructions to explaining a regional scale, the site occupied by the same culture, a generic and adaptable behavioral rationality should be hypothesized, avoiding specific challenging rules and production practices.

Modelling Climate/Environment/Society interactions

Setting biophysical conditions and socio-economic rules at the ho scale and the season level

We propose a spatially explicit bridge (A) and temporally defined (scale’s seasons) multi-agent modelisation

The GASPA platform (game-platform.org) built in Matlab (France) is the software reference for such simulation and long term modelling process

References:

