. Remark, According to theorem 7 and proposition 6, an alternate proof consists in showing that p is ?(X * , X )-lower semi-continuous. The following proof is a slight generalization of the one of

, Also denote by ? : X ?X the canonical projection. By Hahn-Banach theorem, {0} = {x ? X | ?? ? X * ?(x) = 0}, so the topological dual ofX is isomorph to X * : we will identify both, writing, for (?, x) ? X * × X , ?(x) = ?(?(x)). Moreover, we have ?(X * , X ) = ?(X * ,X ), First, denote by (X ,? ) the Hausdorff topological vector space canonically associated to

I. Vladimir, Bogachev. Gaussian measures. Mathematical Surveys and Monographs, 1998.

N. Bourbaki, Théorie des ensembles, 1966.

N. Bourbaki, Livre III, Topologie générale. Hermann & C ie, 1971.

N. Bourbaki, Espaces vectoriels topologiques. Masson, 1981.

R. R. Bahadur and S. L. Zabell, Large deviations of the sample mean in general vector spaces, Ann. Prob, vol.7, issue.4, pp.587-621, 1979.

R. Cerf, On Cramér's theory in infinite dimensions. Panoramas et Synthèses 23, Société Mathématique de France, 2007.

H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, Actual. Sci. Indust, vol.736, pp.5-23, 1938.

A. De-acosta, On large deviations of empirical measures in the ? -topology, J. Appl. Probab, vol.31, pp.41-47, 1994.

A. De-acosta, Projective systems in large deviation theory ii: Some applications, Probability in Banach spaces. 9, vol.35, pp.241-250

. Birkhäuser-boston, . Inc, and M. A. Boston, , 1993.

A. De and A. , Exponential tightness and projective systems in large deviation theory, Festschrift for Lucien Le Cam, pp.143-156, 1997.

D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, vol.20, pp.247-308, 1987.

R. Frank and . Drake, Set theory -An introduction to large cardinals, Logic and the Foundations of Mathematics, vol.76, 1974.

J. Deuschel and D. W. Stroock, , 1989.

R. M. Dudley, Random linear functionals, Trans. Amer. Math. Soc, vol.136, pp.1-24, 1969.

A. Dembo and O. Zeitouni, Large deviations techniques and applications, volume 38 of Applications of Mathematics, 1998.

M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 1984.

T. Jech, The third millennium edition, revised and expanded, Set theory. Springer Monographs in Mathematics, 2006.

K. Kunen, Inaccessibility properties of cardinals, ProQuest LLC, 1968.

J. T. Lewis and C. Pfister, Thermodynamic probability theory, Russian Math. Surveys, vol.50, pp.279-317, 1995.

J. T. Lewis, C. Pfister, and W. G. Sullivan, Entropy, concentration of probability and conditional limit theorems, Markov Processes Relat. Fields, vol.1, issue.3, pp.319-386, 1995.

J. Moreau, Fonctionnelles convexes. Séminaire sur les Equations aux Dérivées Partielles, pp.1966-67

E. Marczewski and R. Sikorski, Measures in non-separable metric spaces, Colloquium Math, vol.1, pp.133-139, 1948.

P. Petit, Cramér's theorem in Banach spaces revisited, Séminaire de Probabilités XLIX, vol.2215, pp.455-473, 2018.

I. N. Sanov, English translation: On the probability of large deviations of random variables, Sel. Transl. Math. Statist. Prob, vol.42, issue.1, pp.213-244, 1957.

L. Arthur-steen and J. Seebach, Counterexamples in topology, 1995.

M. Talagrand, Est-ce que l ? est un espace mesurable ?, Bull. Sci. Math, vol.103, issue.2, pp.255-258, 1979.

S. R. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Applied Math, vol.19, pp.261-286, 1966.

N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions on Banach spaces, Mathematics and its Applications (Soviet Series), vol.14, 1987.

C. Z?linescu, Convex analysis in general vector spaces, 2002.