
HAL Id: tel-03012187
https://univ-tlse2.hal.science/tel-03012187v1

Submitted on 18 Nov 2020 (v1), last revised 26 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An integrated model-based early validation approach for
railway systems

Ronan Baduel

To cite this version:
Ronan Baduel. An integrated model-based early validation approach for railway systems. Software
Engineering [cs.SE]. Université Toulouse 2 Jean Jaurès, 2019. English. �NNT : �. �tel-03012187v1�

https://univ-tlse2.hal.science/tel-03012187v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 2 - Jean Jaurès

Présentée et soutenue par

Ronan BADUEL

Le 30 septembre 2019

Une approche intégrée d'ingénierie des systèmes ferroviaires
basée sur les modèles et prenant en charge leur validation

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Jean-Michel BRUEL et Iulian OBER

Jury

M. Vincent Chapurlat, Rapporteur
M. Ludovic Apvrille, Rapporteur

M. Marius Bozga, Examinateur
M. Drira Khalil, Examinateur

Mme Isabelle Perseil, Examinatrice
M. Jean-Michel BRUEL, Directeur de thèse

An integrated model-based early validation

approach for railway systems

Ronan Baduel, PhD Student at Bombardier Transport

1

Acknowledgments

Though a personal work by nature, many people were involved in this thesis, and deserve
to be cited. I would like to thank first Jean-Michel Bruel, Iulian Ober, Mohammad
Chami and Eddy Doba, which have overseen my activities these past three years and
helped me achieved my goals. I would then like to thank Vincent Chapurlat, who helped
me find this thesis, reviewed it as a rapporteur and has the been the professor that taught
me system engineering before that. A special mention to the functional architecture
team in BT. They welcomed me in the company, helped me with my work and made
my period in Crespin very enjoyable. I hence thank Jerome, Samy, Laurent, Lucile, Ali,
Mouhammadou, Maria, Carine, Aurelien, Emmanuel, Carlos, Delphine, Pierre and all
the others in BT that helped during my time there.

I thank my family, which greatly supported me in my studies up to this Phd. A
special thank to my brother, who helped proof-reading this work without counting the
hours.

I finally thank the jury, who agreed to evaluate this work and provided both a serious
scrutiny during the defense of the thesis and welcomed advices afterwards. I am liable
to omit people, so I would like to thank the readers, be they contributors or persons
interested in this work, for the value they bring to this work.

Abstract

Systems engineering is a field of study multidisciplinary by nature, using knowledge and
techniques from different fields, from mathematics and computer science to organiza-
tional theory. As such, it encompasses hundreds of different jobs and practices. It is a
discipline used to develop complex systems, meaning systems being composed of different
elements linked by relationships. While specifying, developing and validating individual
components may not be an issue, doing the same for the whole system is often difficult.

A complex system such as a train is developed by several teams of engineers with
different viewpoints. We consider here the practice in Bombardier Transport (BT), a
train manufacturing company. In BT, the functional architecture alone necessitates to
be divided among different engineers, using different scopes of study. It is expressed at
system level, meaning the level of abstraction of a vehicle (consist) forming a train. The
system is not defined as a global element, it is induced by different pieces of information.
This information is specified by several engineers or even teams of engineers, even when
considering the system only as a whole without the elements composing it.

The requirements, meaning the expectations expressed regarding the system, often

2

include information relative to sub-systems or components. In order to conceive the
system, the information characterizing it should be expressed at system level or be linked
to global properties or constraints. It means abstracting the information when possible.
Considering the amount of information used to characterize a system, abstracting it
helps to make it more manageable while overlooking unnecessary details which are not
relevant to a global perspective. It can then be integrated into a coherent whole.

Achieving the abstraction and the integration of the information requires having
traceability, so that every relevant piece of information is considered when studying the
whole system. Relevant information about the whole system is taken into account when
studying each of its parts. The notion of relevance mentioned here means that it has
an impact on the part that is currently studied. For example, a train, which is a whole
system, will generally not move if one of its doors, which is a component, is open. On
the other hand, a door component will not open if the whole train is moving. In this
example, with the train being considered as a complex system, information regarding
each individual door will not be considered when studying the train as a whole, just as
a door will not receive information regarding characterizing the train as a whole. It is
however necessary to express, correlate and trace information between different levels of
abstraction to know and/or specify a system and its behavior.

3

The goal pursued in this thesis is to provide a method to integrate information re-
garding a train system during the design phase, enabling the specification, representation
and validation of its behavior. To this end, several solutions are developed: concepts
characterizing the system and its behaviors are developed and applied in models. The
way the models are created and the information expressed through them is automatically
checked using verification rules. The information and the models are then integrated.
The integration is specified and checked using constraints and properties based on the
system concepts developed.

Résumé

L’ingénierie système est par nature un domaine d’étude multidisciplinaire. Elle fait appel
à des connaissances et des techniques d’origines variées, allant des mathématiques et de
l’informatique à la théorie de l’organisation. Ainsi, elle couvre des centaines de métiers
et de pratiques différents. C’est une discipline employée pour développer des systèmes,
c’est-à-dire des ensembles composés de différents éléments liés par des relations. Bien
que spécifier, développer et valider chacun de ces éléments séparément soit réalisable,
faire de même pour le système dans sa globalité est souvent difficile.

Un système complexe tel qu’un train est développé par différentes équipes d’ingénieurs,
chacune adoptant un point de vue différent. On s’intéresse ici aux pratiques au sein
de Bombardier Transport (BT), une entreprise fabriquant des trains. A lui seul, le
développement d’une architecture fonctionnelle d’un train au sein de BT nécessite de
répartir le travail entre différents ingénieurs, chacun s’intéressant à un cadre d’étude par-
ticulier. Une telle architecture est considérée au niveau d’abstraction du système étudié,
qui est un véhicule formant un train ou une partie de train. Le système n’est alors
pas défini comme un ensemble global, il est induit par différentes informations. Celles-
ci sont fournies par différents ingénieurs ou équipes d’ingénieurs, quand bien même on
s’intéresse au système et non pas aux éléments qui le composent.

Les exigences, c’est-à-dire les attentes exprimées vis-à-vis du système, comprennent
généralement des informations relatives à ses sous-systèmes ou ses composants. Pour
concevoir un système, les informations qui le caractérisent doivent être exprimées à son
propre niveau d’abstraction ou bien être liées à des propriétés ou contraintes globales
qui lui sont propres. Cela demande d’abstraire les éléments d’information chaque fois
que cela est possible. Etant donné la quantité d’informations relatives au système, les
abstraire facilite ainsi leur gestion tout en occultant les détails superflus. On peut alors
les intégrer au sein d’un tout cohérent.

4

Abstraire et intégrer les informations relatives au système nécessite de pouvoir les
tracer, de façon à ce que toute information pertinente soit prise en compte lors de l’étude
du système global, et que toute information pertinente issue du système global soit prise
en compte lors de l’étude d’un des éléments qui le compose. La notion de pertinence
exprimée ici se rapporte à l’impact que cela peut avoir sur l’objet étudié.

Un train, en tant que système global, ne pourra généralement pas bouger si l’une
de ses portes, étant donc un de ses composants, est ouverte. De la même façon, une
porte, en tant que composant, ne pourra pas s’ouvrir si le train est en mouvement. On
voit ainsi que l’étude du train dans son ensemble ne tient pas compte des informations
spécifiques à chaque porte, tout comme chaque porte ne considère pas l’ensemble des
informations caractérisant le train. Il est en revanche nécessaire d’exprimer, corréler et
tracer les informations entre les différents niveaux d’abstractions pour connâıtre et/ou
spécifier un système et son comportement.

Le but de la thèse présentée ici est de fournir une méthode permettant d’intégrer
les informations caractérisant un système de train au fur et à mesure de sa conception,
permettant ainsi la spécification, la représentation et la validation de son comporte-
ment. Pour ce faire, différentes solutions sont développées : des concepts caractérisant
le système et son comportement sont développés et appliqués au sein de modèles. La
façon dont les modèles sont créés et dont les informations dont exprimées à travers eux
est vérifiée automatiquement à l’aide de règles de vérification. Les informations et les
modèles sont alors intégrés. L’intégration elle-même est spécifiée et vérifiée à l’aide de
contraintes et de propriétés basées sur les concepts développés vis-à-vis du système.

5

Abbreviations

BDD: Block Definition Diagram

BT: Bombardier Transport

BT SysMM: Bombardier Transport Modeling Method

DITLOTT: Day In The Life-cycle Of The Train

DSML: Domain Specific Modeling Language

FA: Functional Analysis

FB: Functional Block

FBS: Functional Breakdown Structure

FC: Functional Context

FMI: Functional Mock-up Interface

FMU: Functional Mock-up Unit

HIL: Hardware In the Loop

HMI: Human Machine Interface

HW: Hardware

IBD: Internal Block Diagram

OA: Operational Analysis

OB: Operability Analysis

OBS: Operational Breakdown Structure

OMG: Object Management Group

MIL: Model In the Loop

SHL: System Hierarchical Level

PI: Product Introduction

RBS: Requirement Breakdown Structure

SIL: Software In the Loop

SOI: System Of Interest

6

SysMM: System Modeling Method

SW: Software

TA: Technical Analysis

TCMS: Train Control Management System

T0: Train 0

VB: Virtual Bird

V&V: Verification and Validation

WBS: Work Breakdown Structure

Contents

1 Introduction 12

1.1 Context . 12

1.2 Needs . 14

1.2.1 Specify the train behavior . 14

1.2.2 Check the specifications for errors 15

1.2.3 Enable communication of information between engineering teams . 17

1.2.4 Summary of needs . 19

1.3 Challenges . 20

1.4 Target . 23

1.5 Contributions . 26

1.6 Organization of the thesis . 27

I Problem analysis 28

2 Context 29

2.1 Bombardier Transport Modeling Method 29

2.1.1 BT SysMM overview . 29

2.1.2 Operability . 35

7

CONTENTS 8

2.1.3 System development at consist level 46

2.2 Verification and validation process in BT 50

2.2.1 Organization . 51

2.2.2 MIL: Cameo SysML . 52

2.2.3 SIL: Virtual Bird . 56

2.2.4 HIL: TRAIN0 . 58

2.3 Needs analysis . 59

2.3.1 List of issues . 59

2.3.2 Derived needs . 62

2.4 State of the art . 63

2.4.1 Specifying the train behavior . 63

2.4.2 Checking the specifications for errors 65

2.4.3 Enabling communication of information between engineering teams 67

2.5 Contributions . 68

2.5.1 Concepts of states and modes . 68

2.5.2 Model verification method . 69

2.5.3 Behavior verification method and model 69

3 Background: system theory and engineering 70

3.1 System theory and definition . 71

3.1.1 System concept . 71

3.1.2 System representation . 75

3.1.3 Method . 77

3.2 Systems engineering . 78

3.2.1 System concept . 79

CONTENTS 9

3.2.2 System representation . 81

3.2.3 Method . 84

3.3 Synthesis . 85

II Contributions 87

4 Concepts of states and modes 88

4.1 Concept of State . 90

4.1.1 State of the art . 90

4.1.2 Analysis . 91

4.1.3 Definition . 93

4.1.4 Example . 95

4.2 Concept of Mode . 95

4.2.1 State of the art . 95

4.2.2 Analysis . 96

4.2.3 Definition . 98

4.2.4 Example . 99

4.3 Application . 99

4.3.1 Definition of train states . 99

4.3.2 Definition of train modes . 103

4.3.3 Verification of the behavior . 106

5 Model verification method 107

5.1 Models V&V . 107

5.2 Background on BT SysMM . 108

CONTENTS 10

5.3 State of the art . 109

5.4 BT SysMM V&V . 110

5.4.1 Method Stakeholders . 110

5.4.2 V&V Method Overview . 114

5.4.3 Benefits . 116

5.5 Use case example . 117

6 Behavior verification method and model 120

6.1 Presentation . 120

6.1.1 Context . 120

6.1.2 Issues . 121

6.1.3 Related works . 122

6.1.4 Method . 123

6.1.5 Case study . 123

6.2 Behavior description through states . 123

6.2.1 States in the case study . 123

6.2.2 State constraints . 124

6.2.3 State constraints in the case study 126

6.2.4 Use case pre-conditions . 127

6.2.5 Use case pre-conditions in the case study 128

6.3 Verification method . 128

6.3.1 State constraints verification . 129

6.3.2 Use case preconditions verification 130

6.3.3 Results . 130

6.4 Execution model . 132

CONTENTS 11

6.4.1 Holonic structure for states . 132

6.4.2 Structure of the behavior . 135

6.4.3 Structure of modes in the case study 137

6.5 Synthesis . 138

6.5.1 Method . 138

6.5.2 Traceability . 138

7 Conclusion 140

7.1 Contributions synthesis . 140

7.1.1 Concepts of states and modes . 140

7.1.2 Model verification method . 141

7.1.3 Behavior verification method and model 143

7.2 Impact of the global solution . 144

7.2.1 Progress toward the overall objective of BT 144

7.2.2 Consequences on BT . 145

7.2.3 Consequences on MBSE . 145

7.3 Future work . 146

7.3.1 Remaining work to be done in the company 146

7.3.2 Research challenge follow-up and perspectives 148

Chapter 1

Introduction

This PhD provides solutions to specify, integrate and verify a train system behavior. In
this introduction, the context of the work is explained, as well as the problematic that
led to the development of the solutions presented in the next part.

1.1 Context

The work presented here results from a research project conducted in the industry and
require some context. Bombardier Transport (BT), a train manufacturer, has been
developing its systems engineering practice for several years, increasing the use of models,
tools and general methods. BT is a big company of more than thirty thousand people
that focuses its activity on six main implementations all around the world. Albeit being
one of the leading company in train manufacturing, it faces a strong competition, and has
an increasing need to save time and money while improving the quality of its products
to satisfy the clients requirements. In order to get a contract, BT often has to be the
quickest to deliver a product. This requires to build a satisfactory product the first time,
or to face delay penalties otherwise.

We can summarize the current goals of BT as follows:

• Avoiding delay penalties.

• Limiting the number of iterations during the development of a train product.

• Providing higher quality products that meet the clients’ expectations.

12

CHAPTER 1. INTRODUCTION 13

The problem considered here does not deal with the product itself, but the way it
is developed. The Train technologies and components have remained roughly the same
for the last decade, so the main part in developing or adapting a product relates to the
specification of functions. A function is something performed by a train, taking inputs
and providing outputs. A functional architecture is a hierarchical arrangement of func-
tions [1]. Its definition leads to the choice and integration of adequate, often pre-existing
components. The issue for BT is hence to specify what the train must do, when, and
how. The object of study is hence the behavior resulting from the functional architecture
being developed. Interviewing BT’s engineers, it appeared that the concept of behavior
could be understood as “the peculiar reaction of a thing under given circumstances”,
which is one of the definition given in the standard ISO/IEC/IEEE 24765 [1].

The current development process has an issue: the concept of behavior is understood
but not formally defined in BT. The behavior of a train system as a whole is hence not
specified, it is first induced by requirements and individual specifications, and later on by
the design. One could say that the system and its behavior only exist in the engineers’
minds, using their experience and knowledge.

Information regarding the train behavior exists but needs to be captured. Since
the development of a train is based on its functions and behaviors, engineers have to
manipulate abstract information. Be it communicating specifications or searching for
errors, the information contained must be correctly represented and understood by all.
This is an issue in BT, as a same train project can involves development teams from
different departments, countries or companies. Information actually represented can be
expressed differently depending on the tool, the method, the language or the point of
view adopted. This can lead to loss of information, misunderstanding or inconsistencies.

Clients and company requirements regarding the solution have to be taken into ac-
count all along the development process. The current tendency for the development of a
design is to favor the reutilization of requirements, specifications and existing solutions
whenever possible. BT is currently developing product families from which existing so-
lutions can be chosen and adapted depending on the project. This once again requires
a way to formalize and represent knowledge regarding the train and its behavior.

The kind of issues presented here lead BT to adopt, develop and improve Model-
Based Systems Engineering (MBSE) [2] solutions, using SysML [3]. MBSE is the current
and favored approach to the development of complex system [4], supported by research
work and opportunities, which is why it is considered as a solution to BT needs and
problems.

CHAPTER 1. INTRODUCTION 14

BT has developed a modeling method regarding the functional specification of a
train system, the BT System Modeling Method (BT SysMM) [5], which is implemented
through a SysML profile. This method is based on the standard ISO/IEC/IEEE 15288-
2015 [6] as well as studies done to develop functional architecture with SysML [7]. BT
SysMM is presented in further details in the chapter 2.

To reach the goals previously listed, BT needs to improve its development process.
This requires to satisfy the following needs:

N 1. Specify the train behavior.

N 2. Check the specifications for errors.

N 3. Enable communication of information between engineering teams.

Those needs will be satisfied by solutions developed in an MBSE context, compatible
with SysML and improving or completing the BT SysMM.

1.2 Needs

We analyze in this section the global needs of BT and decompose them into a list of
detailed needs to be satisfied by the solutions developed.

1.2.1 Specify the train behavior

We first consider the specifications relating to the train behavior. Elements of the behav-
ior are specified using scenarios and use cases. Scenarios are ”step-by-step description of
a series of events that occur concurrently or sequentially” [1]. In BT, they are expressed
using activity diagrams and sequence diagrams, or even drawn without an official mod-
eling language. They correspond to sequences of operations performed in interactions
with users and external systems. Those operations are called use cases. They correlate
with services or capabilities performed by the train from the users’ point of view. Use
cases are specified using requirements, activities or the actual use case SysML element.
They are defined independently from the scenarios: a same use case can be mentioned
in different scenarios.

A scenario corresponds to an intended utilization of a train system and is used to
model sequence of use cases performed in a given set of circumstances, meaning the
situation the system is in. Scenarios do not cover all possible utilizations of the train,
and the circumstances they express are neither formal nor exhaustive.

CHAPTER 1. INTRODUCTION 15

A scenario can be considered as a piece of the train potential behavior. Depending
on how the execution of the use cases is constrained and the design satisfies the behavior
specified in the scenarios, we can obtain different train behaviors: integrating different
behavior results in new ones, through the phenomenon of emergence [8].

Information on the circumstances of realization of the use cases and their integration
into a global behavior is either incomplete, induced or “hidden” in textual requirements
or specific models such as scenarios, which have limited scope. For example, a use case
can indicate how to change the speed of windscreen wipers, and another to activate
windscreen wipers for a duration after triggering a washing mechanism. In the model
and documentation, there is nothing that says at which speed the wipers should be set
at after washing, if there is a need for a timed activation if the wipers were already
activated, etc. The example is trivial, and may be contained in a specific scope, but it
is symptomatic of a lack of integration of the train capabilities.

The integration itself leads to the specification, comparison and prioritization of
capabilities depending on the circumstances. We need to complete the existing modeling
method with models enabling to specify and integrate the whole system behavior. Based
on current specifications regarding the behavior, there is a need to:

N 1.1. Specify dynamic aspects between use cases.

N 1.2. Correlate the information expressed in different scenarios and use cases.

N 1.3. Formalize the circumstances enabling the execution of each use case.

1.2.2 Check the specifications for errors

We now consider the second objective, which relates to detecting errors in the specifi-
cations. In order to make a good product on the first try, errors have to be avoided
or detected early. A general observation in the industry is that the later an error is
detected, the more the cost [9]. This is why current solutions and improvements focus
on the early stage of a train’s design. There are two aspects to consider when checking if
the specifications are correct or not: it is necessary to check (i) whether the specifications
are consistent with a train product; and (ii) whether the obtained product satisfies the
initial expectations. This ’checking’ process corresponds to two kinds of activities called
verification and validation.

CHAPTER 1. INTRODUCTION 16

Verification and validation are two concepts frequently used in systems engineering,
and need to be defined. By default, the terms used in this thesis correspond to the
definitions provided in the x ISO/IEC/IEEE 24765 standard on systems engineering
vocabulary [1]. We define here the terms of V&V using the common definition and
understanding of these concepts [10]:

• Verification: answering the question ”are we building the system right?”

• Validation: answering the question ”are we building the right system?”

Figure 1.1: BT current validation process

We consider now BT’s current validation process, illustrated in Figure 1.1. It fol-
lows three steps: Model In the Loop (MIL), Software In the Loop (SIL) and Hardware
in the Loop (HIL). MIL is a validation conducted on a co-simulation through SysML
models. SIL is performed on the developed software and emulated hardware through
co-simulation. HIL is performed either on a bench test or a real train.

BT aims for a tool chained method that provided V&V solutions for MIL, SIL and
HIL steps of the validation process. The method should focus on filling the gap between
each of these steps so as to ensure traceability and continuity of the validation. SIL and
HIL already having V&V solutions working, though not fully developed yet, the second
objective was to develop a way to verify and validate the behavior based on SysML
models, which are themselves developed over several steps following BT SysMM.

CHAPTER 1. INTRODUCTION 17

BT currently checks whether a train system performs the expected functions or not,
using tests. Checking that the train behaves as expected, meaning that it can perform
the right functions in the right circumstances is the responsibility of the functional
engineers. They check behaviors that are part of the expected utilization of the system,
expressed using scenarios. This can be done by means of execution or simulation on a
co-simulation or a bench test, that other teams are in charge of developing.

Understanding the system as a whole and knowing how it should behave is something
that is checked by engineers through their knowledge and experience, as well as their
understanding of the requirements. There is no formal validation method regarding the
behavior, engineers rely on manual execution or tests created from scenarios and their
experience to evaluate whether the system is well-made and satisfactory or not. Just as
all possible dynamics between different capabilities may not have been specified, they
may not be verified and validated either. There are no formal requirements on what
should be validated regarding the behavior.

We can summarize the needs for the system behavior V&V as follows:

N 2.1. Define V&V requirements for the integrated system behavior

N 2.2. Provide V&V solutions of the behavior based on SysML models

N 2.3. Ensure traceability and continuity of specifications and validation results

N 2.4. Fill the gaps between tools, models and development steps

1.2.3 Enable communication of information between engineering teams

The definitions provided earlier are only relevant when talking about a system, here the
train. As there a need to properly represent and communicate information regarding the
system, there is a need to ensure that those representations are well made and correspond
to expectations of the people receiving and using them. In an MBSE context, those
representations are models. There is hence the need to verify and validate models, not
the system itself. We will hence talk of system V&V, and model V&V. In the case of
model V&V, we use the definitions of the IEEE 1012-2012 standard [11]:

• Verification: ensuring that the models created have been correctly built.

• Validation: ensuring that the system represented by the models matches the re-
quirements traced to the information displayed or induced.

CHAPTER 1. INTRODUCTION 18

As there is a need for the exchange and reuse of information, there is a need to
check that any kind of model created as part of the development process will be created
and understood in the same way by any engineer. This implies to verify the model. A
modeling language comes with its own rules which force the model to be constrained
and avoid ambiguity in the way it is built. Beyond the fact that the models are correct,
the chosen modeling language has to carry a unique semantics regarding the real system
characterized by the models. This is not validation, this is verification, i.e., the semantic
is not checked but rather the models are verified with respect to the semantic rules of
the chosen modeling language.

We come back to the need to formalize information in models. Concepts have to be
expressed to characterize the real system and its behavior. Defining all concepts to be
used means creating an ontology. An ontology is a ”logical structure of the terms used
to describe a domain of knowledge” [1]. Van Ruijven explains the needs of ontology in
MBSE [12]. Supposing the creation of a formal ontology is achieved, there is a need to
verify the model accordingly, to see if its elements properly express the corresponding
concepts.

Any verification solution will have to be deployed and used in all BT implementations.
It shall be used to standardize the way models are created and understood. It hence has
to be part of BT SysMM.

The needs toward enabling proper communication of a train specifications in BT can
be listed as follows:

N 3.1. Define an ontology that enables us to express system concepts in all models

N 3.2. Develop a model verification solution according to the ontology and modeling
method provided

N 3.3. Implement this solution in a method supporting the system development

CHAPTER 1. INTRODUCTION 19

1.2.4 Summary of needs

We obtain the following list of needs:

N 1. Specifying the train behavior.

N 1.1. Specify dynamic aspects between use cases.

N 1.2. Correlate the information expressed in different scenarios and use cases.

N 1.3. Formalize the circumstances enabling the execution of each use case.

N 2. Checking the specifications for errors.

N 2.1. Define V&V requirements for the integrated system behavior

N 2.2. Provide V&V solutions of the behavior based on SySML models

N 2.3. Ensure traceability and continuity of specifications and validation results

N 2.4. Fill the gap between tools, models and development steps

N 3. Enabling communication of information between engineering teams.

N 3.1. Define an ontology that enables us to express system concepts in all models

N 3.2. Develop a model verification solution according to the ontology and mod-
eling method provided

N 3.3. Implement the solution in a method supporting the system development

Before addressing those needs, it is necessary to consider the scope in which solutions
must be developed and what are the constraints and limitations to consider. More
importantly, we have to identify the challenges toward solving BT issues. Such challenges
will be linked to current research work in MBSE.

CHAPTER 1. INTRODUCTION 20

1.3 Challenges

In this section, we link the needs of BT to scientific challenges in MBSE. We reference
several sources to sum up the challenges faced in an MBSE approach.

Figure 1.2: INCOSE MBSE roadmap [4]

We mainly refer to the MBSE roadmap, shown in Figure 1.2. This roadmap shows
that MBSE is evolving and has yet to reach maturity. Developing and adapting MBSE
solutions for a company is in itself a challenge [13]. BT needs correspond to the need
for a well-defined MBSE, as described in the roadmap.

The issues encountered in BT can be compared to those addressed by Ingham [14]:

• Sub-system-level functional decomposition fails to express the whole system be-
havior.

• There is a gap between the requirements and their implementation.

• The system behavior is not always explicitly specified.

CHAPTER 1. INTRODUCTION 21

The first challenge presented by Ingham can be linked to the notion of emergence
we presented earlier. The second can be linked to the needs in BT N 2.3. and N 3.,
as the proper information must be traced and communicated. The third correspond to
the need N 1.

BT needs to verify and validate train systems behavior. Works [15, 16, 17] show
that one should specify, and if possible validate, the expected behavior of the system as
a whole using requirements and scenarios, before any design or implementation. The
main issue encountered to achieve such a task is that a model of the system is required
to define and support the behavior. The lack of a formal description of the system at
specification level prevents its automatic verification [18]. Rather than just specifying
what the system-to-be does, we have to specify “what” system we want to obtain [18].
Having an integrated model of the system at the early step of design is a challenge.

We can see in [19] that requirements tend to be textual-based. Using models to
express requirements is not a common practice, as explained in [20]. Developing an
MBSE approach for requirements engineering is a challenge [21]. Furthermore, SysML,
which is the language we want to use here, manipulates requirements as blocks with
textual properties. New ways to use SysML elements have to be created in order to
specify requirements in models, as presented in [20].

How to perform validation on system behavior is a field of research in systems engi-
neering [22]. Studies that show that the issues considered in BT are parts of different
challenges that are rarely or ill-resolved in common solutions. For example, emergent
behavior, differences in granularity of the information or the fact that implementation
details can pollute the model are discussed in [23]. The issue regarding various levels of
detail regarding the specifications is also highlighted in [16].

Another study [24] explains that validation is seldom attempted regarding the dy-
namics of a system, and mentions incomplete information as a source of uncertainty
when modeling and validating complex systems. Information can be found partially in
the requirements, but it is often incomplete. Supposing the information is available,
it needs to be correctly integrated in models to be useful. Having an MBSE solution
enabling to transmit information from requirements to a functional architecture is a
challenge, as explained in [25].

The difficulties encountered can be linked to a current research topic that is early
validation [26, ?]. The integration and application of different V&V solutions in the
overall development and modeling process is also an issue [27]. The same study highlights
the issue of expressing and continuously checking system properties through different or
evolving models, which can be linked to BT needs in terms of V&V requirements and
traceability.

CHAPTER 1. INTRODUCTION 22

As mentioned in the need N 3.1., an ontology is necessary to enable communication
and consistency of the specifications in the models. Van Ruijven explains the needs of
ontology in MBSE [12], arguing that a standard ontology for MBSE has yet to be defined
and the ones used in practice lack consistency. This is supported by the MBSE roadmap
defined by the INCOSE, presenting the need for an MBSE theory and ontology to be
considered by the year 2020.

We summarize the challenges as follows:

C 1. Having an integrated model of the system at the early stage of design.

C 2. Making use of SysML elements to specify requirements regarding the system be-
havior.

C 3. Anticipating and/or managing the emergence phenomenon in the behavior.

C 4. Formalizing, completing and standardizing information in the specifications.

C 5. Integrating and applying V&V solutions in the overall development and modeling
process.

C 6. Expressing and continuously checking system properties through different or evolv-
ing models.

C 7. Supporting the MBSE approach by a formal ontology

The way the needs previously expressed are linked to the challenges identified is given
in the Figure 1.3.

CHAPTER 1. INTRODUCTION 23

Figure 1.3: Links between BT needs and identified research challenges

1.4 Target

All the challenges presented in the previous section will not be solved in this thesis,
in part because there are independent teams in BT that are responsible for some of
them. The rest is due to the limitations on the scope of the thesis to keep the issues
manageable and relevant to the company. We provide the scope in which solutions are
to be developed as well as limitations and constraints to take into account.

CHAPTER 1. INTRODUCTION 24

We consider issues and limitations from different points of view, resulting in the
definition of seven domains that we will discuss in this thesis:

• Ontology.

• Semantic.

• Integration.

• Specification.

• Verification & Validation.

• Traceability.

• Modeling.

“Method” and “MBSE” are not mentioned in these domains as it overlaps with the
method that we are currently trying to define, as part of an MBSE solution to the issues
identified. As such, the domains are used to characterizes the different solutions, goals
and benefits of the developed method.

The solutions to be developed will support the BT SysMM. BT SysMM is deployed
and used by the functional architecture department, responsible for functional specifi-
cations of the whole train. Engineers belonging to this team are working closely with
requirements engineers. The functional architecture department provides specifications
to the teams or external suppliers working on the sub-systems of the train. They also
work with teams working on verification and validation of the whole train system, taking
part in the process. This study is hence centered on the role and work of the functional
architecture department. Specifications and models will be provided to the validation
department.

According to the Figure 1.1 and according to the need N 2.4., there is a need to
interface V&V tools and enable the exchange of models. However, the SIL and HIL
solutions are outside the scope of this study. Furthermore, the methods and models
used in SIL are still in development, while the use of SysML models in MIL has been
confirmed. The first step in bridging the gap between a tool and V&V steps of the
validation process is to define and formalize information regarding the behavior and
the criteria used to check it. It is why the solutions developed focus on the SysML
models, specifications and requirements to be transmitted and not the technical aspects,
which are already studied by the validation team. The need N 2.4. will be covered by
specifying the specifications and validation requirements to be transmitted.

CHAPTER 1. INTRODUCTION 25

Each functional architect is responsible for the specification, design, verification and
validation of the system regarding his own scope. They are responsible for the global
functional design along the development process. This is why the focus is put here on
the definition of the upper layer of the system representation, which is the more abstract
way to represent a train. The information manipulated can however be defined with
various levels of abstraction.

A level of abstraction is a ”view of an object at a specific level of detail” [1]. We
consider four levels of abstraction: train, system, sub-system, component. Expressing
information at system level means the information will not mention sub-systems or
components. For example, the energy supply of a train characterizes the train, but it
could mention the status of the batteries of the train, which are components. At train
level, it would mention the train internal energy supply, without specifying any element
at a lower level of abstraction, such as batteries.

Developing sub-systems is often the responsibility of external suppliers. As functional
architects are responsible for specifying the behavior, not the physical architecture, they
should manipulate information at train or system level, not lower. Sub-systems are
defined as abstract entities and treated as black boxes. The solutions developed will
focus on the system level or higher regarding the object of study and the information
manipulated.

BT SysMM is supported by a SysML profile. Concepts have already been defined
regarding the semantics associated to the modeling elements. Rather than developing a
full ontology as specified by the need N 3.1., only concepts needed to represent a system
and its behavior will be defined.

We summarize the scope of the solutions as follows:

• Methods, solutions and models are developed for the functional architecture de-
partment.

• Specifications and models will be provided to the validation department.

• V&V solutions are developed for MIL only.

• Studied information will be at the system level of abstraction or higher.

• Solutions will be compatible will SysML models and BT SysMM method.

• New concepts will directly characterize the system and its behavior.

These limitations apply to both the needs and the challenges previously defined.

CHAPTER 1. INTRODUCTION 26

1.5 Contributions

This thesis is organized around three main contributions, answering the needs of BT
and providing answers to the related challenges.

The first contribution relates to the definition of the state and mode concepts, with
the goal to model a system and it behavior. We define the concept of state to describe
a system and the circumstances it is in at a given time. The concept of mode is defined
in order to specify the behavior by linking actions to circumstances enabling to perform
them. All of this is addressed in chapter 4.

The second contribution presents a solution to check SysML models for errors. A
method is developed to create rules. These rules are short scripts that enable to check
all instances of a SysML modeling element in a project. Any property, attribute and re-
lationship can then be identified by a rule and compared to one or several criteria. Using
such rules to constrain the way SysML elements are used, it is possible to automatically
check models created by engineers for errors with respect to a modeling method. Based
on the SysML profile of the BT SysMM, rules were created to check the semantics behind
models, ensuring that engineers create the same models the same way, enabling their
communication and reuse. This is presented in the chapter 5.

The third contribution uses the concepts of state and mode provided in chapter 4
to describe the system, correlate the information, precondition the use cases, perform
verification activities on the behavior and generate a structure for the model of the
system behavior. This is detailed in the chapter 6.

CHAPTER 1. INTRODUCTION 27

1.6 Organization of the thesis

This thesis is organized in two parts. The first part is an analysis of the issue. The
chapter 2 presents the context of this work and the solutions used by BT, as well as
their limitations, to conclude on a list of needs to be satisfied by the solution developed.
The chapter 3 presents and comments the general system theory and current issues
in systems engineering, to position this work regarding the state of the art and the
challenges it addresses.

The second part presents the contributions. The chapter 4 proposes an innovative
definition of the concepts of states and modes, used to characterize and model a system.
The chapter 5 presents a method to verify SysML models to enforce semantics specific
to BT company. The chapter 6 presents a behavior verification method which leverages
the concepts of states and modes to integrate and verify train system behavior at a high
level of abstraction. The chapter 7 summarizes the contributions and their deployment
in the company, and discusses research and industrial opportunities to explore.

The annexes contain references and examples of some of the solutions deployed in
the company.

Part I

Problem analysis

28

Chapter 2

Context

This thesis has been conducted inside a team of functional engineers, in collaboration
with experts from different sites of the company (France, Germany, England, Canada)
in charge of developing the BT system modeling method for the train functional specifi-
cations. This modeling method is applied on full scale projects but is still being worked
on, as it requires improvements.

This chapter presents the Bombardier Transport System Modeling Method (BT
SysMM) the validation process and solutions in BT regarding the train behavior.

2.1 Bombardier Transport Modeling Method

We presents in this section the BT SysMM. We first provide an overview of the method
and the context in which it is deployed. We then present in more details the operability
analysis, performed at train level, and the operational, functional and technical analysis
performed at system level.

2.1.1 BT SysMM overview

Work Breakdown Structure

BT projects are conducted based on the general Work Breakdown Structure (WBS) [28],
shown in Figure 2.1. A WBS is a structure that describes the work to do in the project.
All nodes of this structure are linked to work packages containing the details of inputs,
outputs, work activities and milestones in each work domain.

29

CHAPTER 2. CONTEXT 30

Figure 2.1: The BT General Breakdown Structure [28]

All projects are different, and so are their WBS. Nevertheless, in order to ensure
consistency, compatibility and communication, each WBS is built around the same base,
which is the general WBS. The focus is put here on the design method, meaning only
a few work packages are considered. They are highlighted in Figure 2.2. Our goal is to
study how the behavior is specified through use cases, scenarios and functions.

Figure 2.2: Elements of interest in the general WBS [28]

CHAPTER 2. CONTEXT 31

Global modeling approach

Figure 2.3: System Hierarchy Level (SHL) for the train design [29]

Each project in BT is developed starting from the highest level of abstraction to
the lowest. The current working level is called the System Hierarchy Level (SHL). The
train is first considered as a whole, described as a black box, then it is divided into
systems corresponding to consists. A consist is an independent element of a train, also
called vehicle. The train can be constituted of one or several consists, each divided into
subsystems, themselves divided into components.

The Figure 2.3 describes the hierarchy of the train system elements. This hierarchy
allows to decompose the development process of the train into more manageable steps,
lowering the level of abstraction of the information considered and restricting the scope
of study as we descend into its levels. The element considered at each step of the process,
for example a consist or one of the subsystems, is called the System Of Interest. This
SOI is the target of the modeling effort and define the scope of the element to consider.

We are interested here in the development of the system behavior, from the definition
of operational scenarios to the definition of a functional architecture. This is done first
in the operability analysis (OB) performed at train level, and then at the system (con-
sist) level through three consecutive steps: the operational analysis (OA), the function
analysis (FA) and the technical analysis (TA).

CHAPTER 2. CONTEXT 32

BT SysMM follows the ISO 15288 standard [6], where a technical process is defined
around successive steps. Specifying the system behavior and functional architecture
would be done at the following steps:

• Stakeholder needs & requirements definition process.

• System requirements process.

Figure 2.4: Train development process

Requirements analysis in BT corresponds to the first step. The train operability
analysis is the second steps, used as a junction between requirements analysis and con-
sist analysis, which comes next. The corresponding development process is shown in
Figure 2.4.

CHAPTER 2. CONTEXT 33

Figure 2.5: Requirement Breakdown Structure (RBS)

The train development process is driven by requirements. All development steps
receive requirements as inputs and generate requirements as outputs. Requirements are
classified according to categories and the SOI they qualify. This classification is called
the Requirement Breakdown Structure (RBS), shown in Figure 2.5.

Figure 2.6: Requirement driven design process [29]

The traceability and refinement of requirements is shown in Figure 2.6. The terms
0R, 1P, 2F, 3A do not correspond to development steps but to the classification of the
requirements associated to or specified in it. For example, functional requirements will
be expressed or traced in OA, FA and TA while being classified in 2F. The arrows
correspond to traceability links between requirements.

Traceability is keeping track of information as it is refined or used in different mod-
eling elements or documents. Refined requirements are traced to the initial ones. Ar-
chitecture and functional elements can be traced to performance requirements linked to
them, supposing they have some.

CHAPTER 2. CONTEXT 34

The traceability should be enforced between requirements, but tends to be lost
through the modeling activities, as the requirements are traced to models. New re-
quirements are obtained after several steps of modeling, making it hard to keep track of
the initial requirements. We identify the following issue:

I 1. Requirements traceability is lost between modeling steps.

The Operability analysis (OB) step concerns the analysis of the utilization of the
train, according to the requirements. Scenarios regarding the operations performed with
the train are specified, then detailed as sequences of train activities which will correspond
to use cases later in the process.

The functions are defined on the consist level, then linked to the subsystems in an
architecture. The subsystems are then developed. Definition of the physical architecture
and development of the subsystems are separate activities that are not covered in this
study. At each level, a three-step development process is applied. Those three steps are
presented in the next section.

The three-step modeling approach: OA, FA, TA

The system development in BT is done around a three-step approach at different hier-
archical levels (Figure 2.4): Operational analysis (OA), Functional Analysis (FA) and
Technical Analysis (TA). In practice, these steps are not assigned to a specific team.

The definition of functions, however, is performed by a team of functional architects
and is supported by existing modeling methods. This analysis is conducted at the system
(consist) level. The modeling method associated can be decomposed into the Operation
Analysis (OA) and the Functional Analysis (FA). The Technical Analysis (TA) is in
majority performed by another team dealing with the system architecture. While the
same modeling method can in theory be applied to subsystems or even components,
those are developed by either dedicated teams or external providers which often possess
their own methods or models. They work more independently and are not considered in
the scope of this study.

CHAPTER 2. CONTEXT 35

Regarding the specifications of functions at system level, the three steps can be
defined as such:

• The OA aims to describing the behavior of the SOI from an external point of view.
Its interactions with its environment are modeled, as well as the tasks it performs
for the users or linked elements, which translate as use cases or functions.

• The FA aims to match uses cases and interactions to global functions, in order
to build a functional architecture. Exchanges between those global functions are
modeled, defining the internal mechanisms of the system.

• The TA corresponds for the main part to others activities such as defining the logi-
cal and/or physical architecture, as well as studying the variability in the available
components (eg. different brands of batteries). It relates to the work of the func-
tional architects when allocating functions to structural elements.

Development process and validation activities

The validation activities are generally performed along the modeling process. BT wishes
to improve those activities and group them as a global tooled method. The Figure 1.1
presented in the introduction shows the validation process currently used by BT, as well
as the solutions to be developed or integrated.

2.1.2 Operability

The goal of operability is to specify the behavior of the train at its own level of granu-
larity. We define granularity as the level of details of the information specified, following
the same decomposition as the SHL: train, consist, subsystem, components. Informa-
tions should be set at a suitable level, generally the one of the SOI. In current practice
in BT, the whole train can be set as a SOI, and be used to attach low level informations.
This is something we try to avoid:

I 2. The specified information is too detailed for high-level SOIs.

Operability analysis (OB) is the most crucial step in our study, as it is where the
expected system and its behavior can and should be specified through the integration
of the expectations into a coherent whole. The OB is a step between requirements
analysis and operational analysis (OA), as shown in Figure 2.4. Following this process,
the requirements from 0R are divided into three categories: architecture (3A), functions
(2F) and performances (1P).

CHAPTER 2. CONTEXT 36

The focus given on the functional aspect of the operability analysis, which enables
the transition from the functional requirements captured, analyzed and formatted in the
requirements analysis and classified as 0R, to those specified in the functional analysis,
refined and classified as 2F.

Concept of Operability

Operability was a concept first developed to express the analysis done at train level when
performing the requirements analysis [30]. The objectives of the operability analysis can
be summarized as follows:

• Analyze and complete 0R functional requirements to derive them as 2F require-
ments.

• Define all planned utilization of the system through scenarios and use cases.

• Describe the train situation and capabilities through its life-cycle.

• Integrate use cases and scenarios into a global behavior.

Operability is initially a requirement driven process, with requirements as inputs
and outputs. It was originally performed on DOORS [31], the tool used to manage the
requirements.

The operability concept in BT is inspired by the ANSI/AIAA G-043 A-2012 standard
[32]. According to this standard, there is a need to develop an Operational Concept
Document (OCD) that, among others things:

• Provides a clear vision of the intended uses and the resulting benefits of the system.

• Provides the basis for system validation.

• Describes how the system will be used.

CHAPTER 2. CONTEXT 37

Method

There is no current official method in BT for operability analysis, as it is a work in
progress. Several attempted versions of a modeling method have been made [33, 34, 35],
and constitute iterations toward a working method. The main issue is that there is a
lack of system concepts, preventing a formalization of the models and of the information
they should contain. A fourth method is currently under development.

I 3. There is no modeling method for the specification of the expected behavior.

I 4. There is a lack of system concepts to formalize and model the behavior.

Figure 2.7: Global operability analysis workflow [33]

As a modeling method for operability is developed, it has to be considered as part
of BT SysMM. This is why the full operability analysis is divided into the OA, FA and
TA steps, as those three steps are applied at each level of development. The operability
analysis corresponds to the development step at the train level, meaning it has the train
as a SOI. The Figure 2.7 is an early proposal workflow for operability analysis. The gray
boxes correspond to steps performed in DOORS.

The focus is put on the specification of the system behavior and the modeling activ-
ities. As such, we are not interested in the TA. The actual specification and modeling
effort regarding functions and behavior in BT is done in the OB, OA and FA.

CHAPTER 2. CONTEXT 38

Inputs and outputs of the operability analysis, as it is the case for most development
steps in BT SysMM, are essentially requirements. There is an intent for outputs to
include models. It is then necessary for models to all be built the same way.

I 5. The models created must be consistent with the modeling method.

Focusing only on the modeling part of operability, a more detailed workflow can be
defined, as illustrated in Figure 2.8 and Figure 2.10, taken from the most recent method
[35].

Figure 2.8: Operability analysis workflow (part 1) [35]

In Figure 2.8, we see that after actors and scenarios have been defined, the scenarios
are linked together through operational modes (which are explained in the next section),
in an attempt to have an integrated behavior resulting from the possible actors inter-
actions with the system. Each scenario corresponds to a complex operation, meaning
an operation that cannot be easily detailed as basic interactions between actors and the
train. All of this is done from the user(s) point of view, based on 0R requirements.

CHAPTER 2. CONTEXT 39

Figure 2.9: Example of scenarios integrated through operational mode contexts[35]

An example of scenarios allocated to operational mode contexts is given in Fig-
ure 2.9. The modeling elements used are activities and activity diagram. While a train
scenario/operation can correspond to a SysML activity, the notion of operational mode
cannot, as it is not an action performed but rather a classification object or a description
of the context/situation of the train. Operational modes and scenarios are not supposed
to be executed sequentially, they are part of a dynamic behavior. There is no proper se-
mantic in the way the models are defined here, as they do not respect SysML semantics,
with activities used the same way as blocks. This originates from the fact that require-
ments engineers had the habit to draw informal scenario to be used in documents. The
information has to be shared on the modeling tool but the method enabling it has yet
to be developed. We note the following issue:

I 6. Concepts of modes are not correctly expressed in SysML models

CHAPTER 2. CONTEXT 40

Figure 2.10: Operability analysis workflow (part 2)[35]

In Figure 2.10, we see that train activities are defined. They will be used to detail the
scenarios/operations defined earlier. Those train activities correspond to use cases that
can be detailed as basic interactions between the actors and the system, something done
later in the process at consist level. Train activities are supposed to be associated to
train states. In this context, those “states” express the conditions under which activities
are (can be) executed. The train states are to be integrated in one SysML state diagram
specifying the evolution of the train and its behavior. However, there is an issue as
there is no definition or method explaining what a state is and how it should be defined.
Engineers know they need an integrated behavior of the train, and have made several
attempts to define state diagrams describing either the evolution of the train states or
its behavior. There is a need to make a distinction between the evolution of system and
the evolution of its behavior. This is expressed in the following issues:

I 7. There is no definition or method explaining what a state is and how it should
be defined.

I 8. There is no clear distinction between the evolution of system and the evolution
of its behavior.

The Figure 2.10 includes a step where activities are supposed to be associated to
states. The goal is to specify the condition under which activities can be realized.

CHAPTER 2. CONTEXT 41

However, there is a difference between the conditions for a given scenario and the
conditions under which each activity can be performed. The engineer is left to won-
der whether a given state qualifies a scenario (under which activities are grouped) or
the activities themselves, that may be performed under a larger set of conditions. As
activities are associated to scenarios and may be present in more than one of them,
states defined around activities inside a scenario qualify the scenario and not the activ-
ities. Consequently, it specifies particular uses of the train but not all of its potential
behavior, preventing a full specification and integration. The method expressing this
workflow was hence not successfully applied, as it failed to answer the issues regarding
the specification and integration of both the system states and its behavior. We note
the following issue:

I 9. The way the states are used and associated to SysML elements is not clear.

Integration

We present here the means used by BT to express integration. The current practice is
to provide an operational life-cycle indicating the sequence of use cases and operations
a system is supposed to perform in the context of a normal execution.

Figure 2.11: Day In The Life-cycle Of The Train (DITLOTT) [30]

CHAPTER 2. CONTEXT 42

The environment, actors, interfaces, scenarios and use cases are defined in the context
of a train daily life-cycle once delivered and in use. This lead to the definition of the
Day In the Life-cycle Of The Train, or DITLOTT, shown in Figure 2.11.

Scenarios are classified among the following categories [30], and constitute the oper-
ational modes presented earlier:

• Normal Operation.

• Restricted Operation.

• Degraded Operation.

• Emergency Operation.

• Maintenance Operation.

Those categories can be divided into several other levels of classification. It forms
what is called the Operability Breakdown Structure (OBS). The OBS was supposed to
be used to classify use cases but failed to do so in practice. While the OBS is a good
classification for scenarios, it is not a good one for the use cases called in them. Many
use cases are performed in more than one scenario and across the different categories.
Use cases are in fact classified in the Functional Breakdown Structure (FBS) as an input
for the first step of the functional analysis that comes after the Operability analysis.

Figure 2.12: Functional domains defined in the first level of the FBS [28]

CHAPTER 2. CONTEXT 43

Figure 2.13: The three levels of the FBS [28]

The FBS is separated in 8 domains, as shown in Figure 2.12. Each domain is struc-
tured on three levels (Figure 2.13). The different levels of the FBS can change from one
project to another, and are defined or adjusted as part of the operability analysis. The
use cases are then allocated to the third and last level of the FBS.

Operational modes, which are modes of utilization expressed from the user(s) point
of view, tend to be mixed with operation modes, which characterize the train capabilities
linked to a situation from its own perspective. Operation modes are shown in Figure 7.1
in the annexes. Operation modes have been defined in a previous method and are
referred to in BT documents as a standard. They are often reused or adapted in the
specifications, but their definition, adaptation or utilization is not formalized and do not
appear in the workflow. The Figure 7.1 indicates that operation modes are supposed
to be organized in separate hierarchical levels, but often characterize different pieces of
information that are more or less correlated. For example, the energy supply modes
(such as “battery power supply”) are contained under the higher level mode “In service
mode”. However, those modes of energy supplied could be considered for other modes, as
it is supplied in energy whether it is in service or not. Operation modes are in fact built
by conditioning different pieces of information put in correlation, meaning conditions
are set on the values of different pieces of information, for example the current energy
supply while being in service.

The Figure 7.1 illustrates pieces of information used in actual projects. The ”modes”
depicted in it are part of a standard in development and still possess flaws. The different
types of information they express ought to be separately defined: modes characterizing
the energy supply are grouped under one mode called ”service”, the reason being that
they are only considered when the train enters service according to the scenarios, even
though the energy supply modes can change in other circumstances.

CHAPTER 2. CONTEXT 44

Operation modes, such as “normal” or “emergency” can also be confused with the
corresponding operational modes. The distinction between these two kinds of modes
is not explicit in current practice and is made here as part of the analysis. The issues
around modes can be summarized as follows:

I 10. There is a confusion on what a mode is and how it is used. I 11. The hierarchy
between modes is not clearly defined. I 12. The way the different types of information
are characterized and correlated is not clear.

Figure 2.14: Example of a state diagram of the operability modes

One of the goals of operability is to deliver a diagram summarizing the evolution of
the train behavior. It sometimes represents the evolution of its driving modes, but it
more generally exposes the evolution of its capability to perform operations, also called
operability. The term carries the same meaning concerning the development step or this
diagram: it is the way the system can be operated.

An example of the operability diagram is shown in Figure 2.14. The SOI in this
diagram is a consist and not a train. The reason is that the train operability corresponds
to the operability of the master consist, meaning the one controlling the others, if there
are any. As the train is an abstract entity, engineers tend to study the consists it is
composed of. This leads to an ambiguity as to what the SOI is under study at a given
step of development.

CHAPTER 2. CONTEXT 45

Each train has a specific operability diagram. The elements of these diagrams are
either called states or modes. They characterize the train and relate to the operability,
hence to the evolution of the train readiness and capabilities. Operation modes or
operability modes do not always characterize use cases or functions directly. They are
often used to describe the situation in the scenarios. The realization of a use case may
be possible in a broader scope than the scenario where it is called.

Train states describe the situation the train is in. It directly preconditions train
activities. Train states are also defined in documentation to express a different kind
of information, such as the train situation in its environment or its energy supply [29].
The information qualified by the states are not always separated. Train states tend
to characterize different types of information at the same time, without concern about
consistency. Even though each type of information has a finite set of values, they are
not always individually or formally defined: in a same situation, the energy supply of
the train can be said to be internal or being provided by its batteries. This difference
in definition for the same information is ambiguous, given values of different types of
information may not always be compatible. For example, a train cannot be moving with
its parking brake engaged, proving that two different kind of information can constrain
the values of one another. As such, there is an issue:

I 13. Constraints between possible simultaneous states are not formally defined.

States are often mixed with operation modes or operability modes. Modes in BT,
compared to states, are understood to be linked to the system functions, meaning func-
tions are enabled or not depending on the modes currently activated. Those relations
are not clearly defined. Coming back to Figure 7.1 and the step where activities are
supposed to be allocated to train states, we see that train states fulfill the same role as
modes, demonstrating that those two concepts are mixed. Modes are used to both clas-
sify scenarios and use cases and to represent the system behavior. There is an ambiguity
in their meaning and application, just as there is for the states. We note:

I 14. The differences and relationship between states and modes is not clear.

We have seen that scenarios and use cases are classified separately. This is a key
point and issue to address in operability: switching between the user’s point of view
previously adopted in the requirements analysis to the one of the system adopted in
the functional analysis. Scenarios and use cases are classified according to utilization,
situations and skill domains, while functions of the train are to be organized in system
elements (logical and/or physical).

CHAPTER 2. CONTEXT 46

2.1.3 System development at consist level

BT SysMM currently specifies how to model the system (a consist), though it could in
theory be also applied to subsystems. It applies a three-step development process for a
given hierarchical level.

Each step of the process follows the same pattern: first defining the context with all
interacting elements in a Block Definition Diagram (BDD), then specifying the exchanges
between these elements in an Internal Block Diagram (IBD), and finally defining the
other elements specific to these steps (use cases or functional blocks for example).

It should be noted that although the method is presented sequentially, the modeling
work is in fact done iteratively. It is for example doubtful that all the information
exchange will be specified in the first version of the IBDs. They will be completed after
modeling sequence diagrams or other elements.

Operational Analysis

The goal of OA step is to express the system behavior from an external point of view, as
well as what it is expected to perform. The elements of the BT SysML profile for the OA
are the operational block, the operation context and some variation of the requirements
and relations that will not be specified here.

Figure 2.15: The operational context and its related elements [36]

The operational block (named consist as it is the SOI) is defined for all elements in
the OA. For each scope, an operational context is defined with all actors and environment
elements interacting with the SOI.

CHAPTER 2. CONTEXT 47

Actors and environment elements are parts of a library that can be completed or
adjusted following the requirements and the specifications in operability analysis. An
example of an operational context definition is shown in Figure 2.15.

Once the operational context has been established, an IBD with all the interacting
elements in the operational context is modeled.

The elements specific to the operational analysis and used as outputs of this step
are then defined. Use cases are created, linked to sequence diagrams and activities. BT
SysMM suggests creating the sequence diagrams before the use cases. Each sequence
diagram specifies the interactions between the SOI and the elements of the context
relating to a use case.

Another issue in the use cases definition is the expression of the preconditions, be
it for the use case as a whole or for the operations described in the sequence diagrams.
This information is taken from the requirements, and as such is not formal, nor com-
plete, shared or known by all engineers working on different use cases and requirements.
This corresponds to the need N 1.3. Part of the issue would be solved if we had a
solution in operability analysis, where the same difficulty was encountered. However,
the information would not be exactly the same, as the SOI has changed from the train
to a consist. The states and modes expressed here would characterize a consist, not the
train. We note one issue:

I 15. States and modes do not follow the evolution of the SOI.

In order to specify a given behavior, it is necessary to define the preconditions of
each operation and action taken by or through the train. Preconditions are expressed
informally, their specifications and meaning being based on the engineers knowledge and
competence. The information is for the most part contained in the engineers minds,
not in the model. Another concern is that the preconditions are not easily accessed,
traced or manipulated. A solution to this issue has been to define spreadsheet files to
put together the information in front a list of use cases, but ultimately failed as it had
to be filled manually and the information was too detailed, redundant or unclear.

Once defined, the use cases are put in use case diagrams for more visibility. The
use cases are linked to actors or relevant context elements. Traceability can be ensured
at this step by allocating requirements to the use cases. Use cases would normally be
linked to requirements in operability, where they were expressed as train activities. The
traceability between train activities and use cases is not ensured. Ideally, use cases
would be traced to the train activities elements, themselves linked to requirements.
Requirements can be imported from DOORS as SysML elements.

CHAPTER 2. CONTEXT 48

In order to define the tasks (functions) and operational behaviors expected in each
use cases, activities should be defined for all of them, according to the method. An
activity can be used in several use cases. In theory, such elements are created in a
separate folder and allocated to the relevant elements through the diagrams.

In practice, creating activity diagrams require a large modeling effort, and there are
no library of activity elements as they are to be defined along the use cases specification.
This restriction makes it difficult for engineers to cooperate and use the same activity
elements when needed. Operations in sequence diagrams would correspond to those
activities, hence leading to some redundancy. Those activities elements could eventually
be allocated to function blocks (defined hereafter) to support their definition, but they
are not defined with such an intent and functional blocks have no formal definition
method for them.

The reason activities should be defined is to be shared among use cases, enabling
to specify a unique group of functions and the circumstances under which they are per-
formed. Sequence diagrams have a beginning and an end, they are not adapted to express
dynamic aspects, as loop and simultaneous actions are not formalized. Alternative choice
of actions can be hard to model. Integrating activities from all use cases, on the other
hand, would enable to specify the dynamic between them: which one can be executed
at the same time, are there any loop, how can use cases be sequenced, etc. This would
be facilitated by the integration done in the operability analysis, should it be achieved
(we saw it was not the case yet). Instead of specifying separated expectations regarding
the system behavior, it would then be possible to integrate them into one, full, consis-
tent model of the expected system behavior. However, there is currently no method nor
models achieving this purpose. This issue has been covered in the introduction in the
need N 1..

Once all operational blocks, use cases and corresponding sequence diagrams have
been defined, the Operational Analysis is finished. The OA can be used as a commu-
nication mean with all persons of interest, whether engineers or clients. The activities
defined in the OA are not considered as official functions regarding the deliverable. Func-
tions are officially defined in the FA. As a consequence, there is a lack of traceability
between the behavior specified in OA and the one developed in FA. This illustrates the
need N 2.3.

CHAPTER 2. CONTEXT 49

Functional Analysis

The functional analysis aims to define the main functions the system considered must
fulfill. The elements of the BT SysML profile for the FA are the functional context
(FC) and the functional block (FB). Each FC correspond to a use case, and regroup
functional blocks. The FBs are global functions elements, meaning they each contain
different functions that are not detailed. They are used to classify and organize functions,
so that they may be allocated to sub-systems. They are grouped in FC. A FB can be
used in several FC.

First, the FC is defined in a BDD. Functional contexts aggregate or are composed of
FBs. FBs are often reused from other projects or from a product family. There is not an
official library for them. Engineers can create their own FB and refine them later so that
they correspond to preexisting ones in order to be able to allocate them to subsystems
later in the process.

Each FC is defined in the third level of the FBS. FBs are defined in the first scope
where they are called by a FC. As said before, there is no official library for them, so
they are not contained in a separate folder. This can be an issue as they can be called
in several scopes of the FBS, and as such cannot be properly contained or classified in
it. Each FB is supposed to be defined only once. A FB is contained by the FC where it
is defined first. A FC including a FB already defined in another FB will aggregate the
existing FB.

The FBs are used to refine the sequence diagram associated to the use case from
which the FC has been defined. Each FB corresponds to a line in the sequence dia-
grams. Exchange between those lines show the inner working of the train. The activities
allocated to the use case defined in the OA can be used to build the sequence diagram.

An IBD is then created, modeling communication and exchange between the FBs of
a given FC.

This time, the system behavior is partially integrated as all of its functions and
behaviors are expressed through a same set of FBs. However, the operations performed
by each FB in the different functional contexts and sequence diagrams it is involved with
are not detailed. As each FB can be responsible for different operations, the way those
operations are integrated (without being detailed further) should be specified.

The FA is then finished as specified in the BT SysMM. Requirements and FBs are
expected as outputs. FBs are defined at a same level of abstraction and detail, or are
derived until it is the case. They are all defined in a same level, without any hierarchy
between them. This means that the function architecture is ensured by the FBS and
the FCs it contains. Each FBs will be allocated to one subsystem in the TA.

CHAPTER 2. CONTEXT 50

A dysfunctional analysis is done at this point, as part of the functional design process.
Each function gets a context and an analysis of the possible failures and their potential
consequences. This work is done by a separate team on a separate tool, so it is not
considered as part of BT SysMM and the process described here. This separation is
enforced for organizational reasons, but also to ensure an independent analysis of the
system by people with specific responsibilities and skills.

Providing that the different, internal operations are properly identified and modeled,
the previous issues identified around the specifications of the system behavior remain the
same: specifying the states and modes, the preconditions of the operations, correlating
the information, etc.

Technical Analysis

In the TA, the functional blocks are associated to subsystems. A logical architecture is
then established. IBDs are made to show the exchange of signals between subsystems.
Interfaces are defined for each subsystem.

The allocation of FBs is decided based on architectural requirements and after an
analysis on the variability of subsystems and components that can be chosen as a so-
lution. This is hence a task performed by another team in charge of the system archi-
tecture, and is not in the scope of the present method, where we focus on the system
behavior independently of the system logical or physical structure.

2.2 Verification and validation process in BT

The validation process of the system behavior at system level is best summarized by the
Figure 1.1, already presented in the introduction.

BT engineers are fully capable of building a train with current methods and models,
but such a train may not be a working or satisfying solution for the client, at least not
on the first try. Conducting an iteration on the development of a finished product can
take months or years and is very costly. To ensure that the right product is developed
in optimal conditions, we need to perform some early validation and check the system
continuously as it is developed, as opposed to a pure Specify-Design-Build-Test-Fix
(SDBTF) approach which is inefficient and limited [37].

This section aims to analyze the current validation solutions of the system along the
development process. We will consider the constraints and needs regarding their evolu-
tion. We want to capture the needs regarding an early validation solution of the train
behavior at system level, using the requirements provided by the functional architects.

CHAPTER 2. CONTEXT 51

This early validation would be performed on integrated executable models at the MIL
step.

2.2.1 Organization

The definition, management, planning and realization or the train validation is done
through several departments and roles:

• The project management team orders, manages and plans the validation. It is
constituted around people from management and engineering departments. For
example, a functional architect can be given a project manager role.

• The validation requirements are provided by the engineering departments involved
in the train development and analysis, such as the functional architecture depart-
ment, the application TCMS (Train Control Management System, a subsystem of
the train) linked to a site, etc. The Safety and reliability department as well as the
authorization department also provide validation requirements, after doing their
own analysis.

• The validation department performs the validation in internal or external labora-
tories.

• Product introduction (PI) takes care of maintenance and management of test
trains, and as such should not take part in any early validation activity and won’t
be considered here.

• Train0, the team managing the bench tests and hence the HIL, depends on the
validation department and performance measurement. It can be considered as a
laboratory.

The task performed by each department are here given as an indication, the work
process being more complex than that. For example, the validation department takes
part of the planning and discusses the budget, engineers often take part in the validation
realization, etc.

The departments involved in the validation process have been identified. We will
now define the stakeholders involved in or benefiting from the solution pursued, whether
they depend on these departments or not.

CHAPTER 2. CONTEXT 52

We are considering the teams working on the system and subsystem level regarding
specifications, designs development and validation activities. The following roles can be
defined:

• System specification suppliers: The people producing the functional design of the
train at system level, giving inputs to suppliers.

• Subsystem suppliers: the people developing, verifying and validating the different
subsystems and providing resulting system validation specifications.

• Validation teams: people already working on validation solutions.

• Clients and providers: people influencing or benefiting from the solution results.

2.2.2 MIL: Cameo SysML

We present here previous work done in BT to create models for a validation during the
MIL phase, based on system specifications by the functional architects. An executable
model was created as part of a project, using the tool Magicdraw and its plug-in Cameo.

Figure 2.16: System architecture

The integrated system behavior is to be specified using SysML state machines to
coordinate and mix individual sequences of operations.

CHAPTER 2. CONTEXT 53

Those sequences of operations can be represented using activity diagrams, called in
transition between state elements in the state machines. Each state machine expresses
the behavior associated to a block, for example a FB. Those blocks need to be part of a
structure and exchange signals through ports. The Figure 2.16 represents the structure
obtained at the end of the system functional specification.

A first issue is that the allocation of FBs to subsystems is done at the TA, meaning
it is the conclusion of all the work of the functional architects. Due to the impact of
an error in the specification, the length of the development process and the amount
of work needed to develop a subsystem architecture, there is a need to validate the
behavior and the FBs before their allocation to subsystems. This means having no
logical (subsystems) nor physical (components) structure to which we could allocate
the behavior. The solution used in previous attempts to model the system behavior
was to structure the behavior around the functional contexts. This proved impractical,
as there were 74 functional contexts in the project considered, all at the same level of
abstraction and with many connections between them. Moreover, they each aggregated
between 3 and 10 FBs out of a poll of 121, and the same FBs could be contained in
different functional contexts, expressing different pieces of behavior. It means that the
behavior of each FB was not unique and integrated. Even limiting the scope of study, it
still resulted in big models difficult to explore and analyze. The goal was to study the
behavior, not the mechanism inducing it which was too complex to consider in details.
This raises the following issue:

I 16. There are no structure upon which building and organizing the system behavior
before considering a design.

CHAPTER 2. CONTEXT 54

Figure 2.17: Extract of a FB behavior modeled with a state machine

Without an insight on the current actions available, one has to manually explore
the state machines of all FBs. In our example, there are 121 FBs with even more state
machines as the FBs can be called in different FCs. It is not practical or even possible
to know if and how the system will react by looking at all the state machines each time
there is an interaction. An example of executable state machine associated to a FB
is shown in Figure 2.17. We can see that the guards on the transition are very long,
cannot be read and tend to be repeated. State elements can both correspond to the
state of different elements, such as a component or a subsystem. Such states express an
information that could be used or put in the guard in the transitions. We identify the
following issues:

I 17. Possible actions during the execution of the executable models are not avail-
able. I 18. Guards on transitions are redundant, hard to specify, not readable and not
linked to states.

We consider that the role of the SysML state elements in a state machine is to express
the internal evolution of the system behavior. This behavior is non-deterministic from
an external point of view. There can be different responses from the system to a same
input, even if all variables and parameters are the same, due to the evolution of the
system behavior through time. The order in which actions are performed can also have
an impact. Going back to Figure 2.17, we see that state elements are used to see the
consequences and evolution of some information regarding train elements, such as the fact
that a door is open or not. This information could be accessed using a variable. Looking
at this state machine, which is typically hidden in a large and complex executable model,
an engineer has the knowledge of some information regarding system elements but has
to read every single guard to know what can be done at this point in time.

CHAPTER 2. CONTEXT 55

It would be useful to integrate similarities in guards into operational situations where
a group of actions is enabled. To better apprehend the behavior specified here, one
could reduce the redundancy in the specification of the guards. To do that, it would
be relevant to express separately the current “state” of the system and the one of each
of its elements. By state, we mean here the circumstances the system elements are in
relative to the environment and internal variables. Those states would then be used to
express the conditions put on the guards. Conditions would be attached to the “state”
modeling elements of the SysML state machine, which we do not consider to correspond
to the concept of state. All sub-states elements and transitions linked to a given state
element would then all share the conditions associated to the state they are contained
in. A guard on a transition would then only contain the conditions that are specific to
it.

The issue of having the behavior only specified in state machines allocated to FBs
is that it is not explicit. Indeed, FBs can be used in several functional contexts for
different purposes, and as such do not provide direct information on the train capabilities.
Capabilities can be captured by specifying the use cases available or currently performed.
The functional decomposition and specification describes the internal working of the
system that will implement the expected behavior, expressed from the user(s) point of
view. The expected behavior is induced by the functional decomposition, but is not
explicitly described by it. The state machines specify how the train works but not
what it can do. As the desired interactions and their effects with the train are known
and limited, the goal is to integrate them and constrain the resulting behavior so that
only the desired reactions are possible. It is currently possible to specify the mechanism
providing an induced behavior. What we lack is a way to specify, integrate and constrain
such a behavior at a higher level of abstraction, so that we know what should be induced.
This relates to the need N N1. and the challenge C 1..

What the user(s) does has been expressed through requirements and scenarios in the
operability analysis and the OA, how the train works is specified in FA using sequence
diagrams, state machines and activity diagrams. What is lacking is a model of what the
system can do. It should be possible to evaluate the capabilities available or performed
by the system at any given point in time, which is the objective of the integration desired
at the end of the operability analysis. The details of such a behavior can be specified
using the specifications in OA. Once a model of the system behavior has been created,
it should be used to check designs and implementations of the system. To do that, the
model should use information specified in FA to determine available capabilities.

CHAPTER 2. CONTEXT 56

2.2.3 SIL: Virtual Bird

Virtual Bird (VB) is a solution for integrating and simulating models and software. It
is based on Controlbuild, a tool developed by Dassault. Controlbuild respect the IEC
61131 standard [38], created by PLCOpen, and as such is able to integrate all models
and SW that are compliant with it. It is also compatible with several tools which handle
the FMI/FMU standard [39]. FMU/FMI is an open standard for models and software
exchange and is used by a growing number of tools such as Matlab, OpenModelica, Catia
or Magicdraw.

Figure 2.18: The four levels of abstraction for models integrated in VB

VB proposes an environment for every supplier to test their models and software.
The team working around VB develops or adapts executable models, performs V&V on
them before integrating them with others models and SW provided by the suppliers.
Then, a validation regarding the functional specifications is done. The VB team differ-
entiates four levels of abstraction regarding the sub-systems they integrate, as shown in
Figure 2.18.

CHAPTER 2. CONTEXT 57

The activities performed using VB are the following:

• Acquisition, adaptation or development of executable models and software.

• Building the integration structure/environment and managing the implemented
configurations.

• Individual verification and validation of models adapted or created by the team.

• Functional validation on integrated components through their abstraction levels,
depending on availability and needs.

• Other analysis and support depending on the validation needs.

As of now, the VB team performs two kinds of validation: one through tests under
the form of scripts that are automatically executed, and one through manual simulations,
sending signals from a Human Machine Interface (HMI) according to a set of scenarios
taken from the specifications. It is also possible to generate random scenarios and to
check properties, but it is not used since it is in low demand and takes a lot of time to
analyze scenarios that are often not relevant. Performance analysis could be possible
depending on the models integration but it is not in the scope for the moment. Some
work was done in VB to test the performance of the brake system, so it can and has been
done already. We can keep it in mind for future uses or improvements of the solution.

In order for the VB team to perform other V&V activities than tests or execution, it
needs a list of properties or constraints to check the integrated system behavior. There
is a need to know the limitations that should be put and respected in the train’s system
evolution. Considering the need N 2.1 and the issue I 8., we can see that even though
V&V activities in SIL are outside the scope of the solutions to be developed in this
thesis, they are impacted by the issues we consider.

Checking currently known constraints and properties is done by generation of random
inputs, which is only pertinent if the cases tested are plausible. Having an integrated,
constrained model of the system behavior would enable to identify which use case could
(should) be performed at a given point in time. This way, random inputs can be limited
to what the system is supposed to react to according to the specifications.

The VB activities start once the system level specification is done. As this time, the
signals and interfaces are issued from the technical analysis and hence are the same as
the ones that will be developed. There is no difference between the levels of abstraction
of integrated sub-system from the point of view of the integration environment, as it
should be since they are considered as black boxes.

Executable models obtained from BT or supplier specifications are currently used to
complete SIL co-simulation but could be used for MIL.

CHAPTER 2. CONTEXT 58

BT specifications that come before the development of sub-systems are not expressed
into integrated models, they are functional blocks allocated to sub-systems, and their
behavior is described in separated sequence diagrams. Those sequence diagrams are
currently used to specify tests for the co-simulation in SIL and HIL. There are no models
integrating these behaviors into one with dynamical aspects that could be built into a
MIL co-simulation. More than an executable model, which they could develop, the
Virtual Bird team is in need of integrated specifications and requirements for validation
.

2.2.4 HIL: TRAIN0

The team Train0 (T0) depends on the verification and performance measurement de-
partment. It takes care of the integration of HW and SW on test benches and simulation
bays. The scope of T0 V&V activities is around sub-systems considered as black boxes.
Such activities cover the whole train development process, as they participate in the val-
idation plan initialized during the response to clients’ call for offers to develop a train.
They discuss with system engineers and the Product Introduction team to see which
sub-systems should be integrated, and then they prepare the T0 base. There is a T0
for each train family, and even if the SW change, most components remain untouched,
and the test bench is modular. The bay can be connected to others pieces of HW and
SW. Executable models can be put in units of the simulation bay, and any number of
simulation bays can be added as needed.

T0 has a broad range of scopes and activities regarding the use of their solution,
among which the validation of functional specifications: the same validation done in
MIL/SIL is performed on the real components.

Even if we suppose that the validation done in the desired solution combining MIL
and SIL is deemed satisfying regarding the specifications, T0 solution integrates or inter-
faces with HW, which has its own benefits. It possesses a lot more of calculation power
while adding information and capabilities such as time response through the cable net-
work.

T0 also has needs for integrated model of the system behavior as well as constraints
and properties to check it. The VB team and T0 team are independent but there is in
fact some redundancy in their tasks, responsibilities and skills. This can be justified by
the fact that the two solutions are not always deployed on a same project. However,
it can happen that they build similar co-simulations and models separately. There is a
need to track the system behavior through its models and the V&V activities performed
on it. The solution to this issue is less technical than methodological and implies to
solve the same issues as the one identified for VB. This relates to the needs N 2.3. and
N 2.4., as well as the challenges C 5. and C 6..

CHAPTER 2. CONTEXT 59

2.3 Needs analysis

This section presents the needs of BT regarding the solution(s) to be developed as part
of an integration and validation process using models. The needs presented here result
from the analysis of current solutions in BT.

2.3.1 List of issues

We present here the list of issues analyzed in the previous section:

I 1. Requirements traceability is lost between modeling steps.

I 2. The specified information is too detailed for high-level SOIs.

I 3. There is no modeling method for the specification of the expected behavior.

I 4. There is a lack of system concepts to formalize and model the behavior.

I 5. The models created must be consistent with the modeling method.

I 6. Concepts of modes are not correctly expressed in SysML models

I 7. There is no definition or method explaining what a state is and how it should be
defined.

I 8. There is no clear distinction between the evolution of system and the evolution of
its behavior.

I 9. The way the states are used and associated to SysML elements is not clear.

I 10. There is a confusion on what a mode is and how it is used.

I 11. The hierarchy between modes is not clearly defined.

I 12. The way the different types of information are characterized and correlated is not
clear.

I 13. Constraints between possible simultaneous states are not formally defined.

I 14. The differences and relationship between states and modes is not clear.

I 15. States and modes do not follow the evolution of the SOI.

I 16. There are no structure upon which building and organizing the system behavior
before considering a design.

I 17. Possible actions during the execution of the executable models are not available.

CHAPTER 2. CONTEXT 60

I 18. Guards on transitions are redundant, hard to specify, not readable and not linked
to states.

We analyze these issues one by one, and express corresponding needs to be answered
by the solutions developed.

I 1. Requirements traceability is lost between modeling steps.

This needs imply that information should be traced in the models, so that a new
requirement linked to a model can be traced to previous requirements associated to the
model. Traceability links hence have to be ensured between modeling elements. There
is a need to enforce such a traceability. This can be linked to the needs N 2.3. and
N 3.2., as enforcing traceability link can be performed by a model verification solution.

I 2. The specified information is too detailed for high-level SOIs.

It is implied in BT SysMM that each step targets a single SOI. We consider that
the level of abstraction of the information manipulated should be the same as the one
of the SOI. If each piece of information is expressed at a different level of abstraction,
then there can be no complete, integrated representation of the system information for a
given level. It also enable engineers to use and share the same information, so it relates
to the need N 3.. We define the need:

N 3.4. Express information at the SOI’s level of abstraction.

I 3. There is no modeling method for the specification of the expected behavior.

This issue can be linked to the needs N 1. and N 3.3..

I 4. There is a lack of system concepts to formalize and model the behavior.
I 6. Concepts of modes are not correctly expressed in SysML models.
I 7. There is no definition or method explaining what a state is and how it should be
defined.
I 8. There is no clear distinction between the evolution of system and the evolution of
its behavior.
I 9. The way the states are used and associated to SysML elements is not clear.
I 10. There is a confusion on what a mode is and how it is used.
I 14. The differences and relationship between states and modes is not clear.
I 15. States and modes do not follow the evolution of the SOI.

CHAPTER 2. CONTEXT 61

All of those issues relate to the definition of the concepts of states and modes, which
are used to define the system and its behavior. We can define corresponding needs, that
relate to the need N 3.1.:

N 3.1.1. Define the concepts of states and modes.

N 3.1.2. Define the link between states and modes

N 3.1.3. Use state and mode concepts to model the system and its behavior

N 3.1.4. Manage information expressed in states and modes

I 5. The models created must be consistent with the modeling method.

This issue relates to the need N 3.2..

I 11. The hierarchy between modes is not clearly defined.
I 16. There are no structure upon which building and organizing the system behavior
before considering a design.

Modes will be used to structure the behavior of the system, which relate to the need
N 1.. We hence define the need:

N 1.4. Define a structure around which organizing the model of the behavior.

I 12. The way the different types of information are characterized and correlated is not
clear.
I 13. Constraints between possible simultaneous states are not formally defined.

Correlating information relates to the need N 1.2.. Defining constraints on states
enable to correlate information.

I 17. Possible actions during the execution of the executable models are not available.
I 18. Guards on transitions are redundant, hard to specify, not readable and not
linked to states.

These issues relate to the need N 1.3.

CHAPTER 2. CONTEXT 62

2.3.2 Derived needs

We obtain a new list of needs:

N 1. Specifying the train behavior.

N 1.1. Specify dynamic aspects between use cases.

N 1.2. Correlate the information expressed in different scenarios and use cases.

N 1.3. Formalize the circumstances enabling the execution of each use case.

N 1.4. Define a structure around which organizing the model of the behavior.

N 2. Checking the specifications for errors.

N 2.1. Define V&V requirements for the integrated system behavior

N 2.2. Provide V&V solutions of the behavior based on SySML models

N 2.3. Ensure traceability and continuity of specifications and validation results

N 2.4. Fill the gap between tools, models and development steps

N 3. Enabling communication of information between engineering teams.

N 3.1. Define an ontology that enables us to express system concepts in all models

N 3.1.1. Define the concepts of states and modes.

N 3.1.2. Define the link between states and modes

N 3.1.3. Use state and mode concepts to model the system and its behavior

N 3.1.4. Manage information expressed in states and modes

N 3.2. Develop a model verification solution according to the ontology and mod-
eling method provided

N 3.3. Implement the solution in a method supporting the system development

N 3.4. Express information at the SOI’s level of abstraction.

CHAPTER 2. CONTEXT 63

2.4 State of the art

We present here existing solutions or leads in the research fields regarding the needs
identified and the challenges to address.

2.4.1 Specifying the train behavior

We first consider the need N 1. and explore existing ways of specifying a system behav-
ior. The goal is here to specify it independently from a design. This means that in terms
of development, this task is related to the requirement analysis. We use here the term
requirement analysis as defined in [1]: a ”systematic investigation of user requirements
to arrive at a definition of a system”. While requirement analysis in BT is outside of the
scope of this work, operability is not. In operability, requirements are expressed through
scenarios and use cases expressed using SysML elements and diagrams. The goal is here
to formalize, integrate and represent information in SysML models.

To consider both the standards and the current leading effort in MBSE research, we
refer to the working groups on MBSE methodologies related to the Object Management
Group (OMG) and the organizations associated [40, 41, 42]. .

Referring to a system engineering book published by INCOSE [41], we see that in
the proposed technical process for system development, the behavior is first specified
by operational scenarios. The behavior as a whole is described by life-cycle concepts,
which are document-based requirements of the evolution of a system, according to dif-
ferent contexts and points of view. The operability state machine created in BT can be
considered as a model of one such life-cycle concept.

The Systems Modeling Toolbox (SYSMOD) presented by Weilkiens [40] describes
a development process based on the definition of actors and related use cases. Use
cases appear in scenarios described using activity diagrams. Each use case is later
described by a sequence diagram. We see that this approach is similar to BT SysMM.
A global behavior is not considered or modeled before the definition of an architecture
and associated functions. Another book by Weilkiens [43] describes the same idea. The
behavior specified is the one of the users, not of the system. The expected system
behavior will be induced in part by these specifications, but not defined. This can be
explained by the fact that the user’s point of view is adopted and not the one of the
system.

As a whole, these methodologies answer parts of the need N 1., but show limitations
regarding the needs N 1.1-4. associated to it.

Having considered the early definition of a system behavior in existing system devel-

CHAPTER 2. CONTEXT 64

opment methodologies, we now analyze the use of models in requirement analysis.

The book [44], which is based on the IREB standard, explains that models can
be used to represent specification requirements. It also indicates that SysML state
machines are used to express requirements regarding a system behavior, with use cases
and scenarios being used as support or context for the information displayed. A dynamic
view is presented, describing a point of view where different types of diagrams are used
to characterize the system behavior. Once again, activity and sequence diagrams are
used to represent scenarios and interactions with the system, but state machines are
explicitly cited in being used to represent the system evolution and reactions. The
following benefit of using models for requirements is presented:

”Diagram types are defined for a specific purpose and, through the available notation
elements (semantics) and the way the language allows these notation elements to be
combined (syntax), force the modeler to focus on a situation. For example, state machine
diagrams should be used to model the necessary reactive behavior of the system under
development as part of requirements modeling and not to model processes or information
structures.”

We see the necessity of formalizing the way the behavior is expressed and how. In
addition, the idea of constraining the use of a modeling language elements and semantics
to better express information can be related to the needs N 3., N 3.2. and N 3.3.. In
particular, the need to define and restrict what a state represent and how to use it to
specify the system behavior can be linked to the needs N 3.1.1. and N 3.1.3..

[44] defines the preconditions of each use case using the states defined in the state
machines. Added to the other views and diagrams, it address the needs N 1.2 and
N 1.3.. It does not, however, present a way to correlate the information or the use cases
themselves. Use cases are correlated by operational contexts, just as in the methodologies
studied earlier. The need N 1.1. is not addressed. Neither is the need N 1.4., as there
is no indication on how to structure and correlate the different state machines. The
book describes how to use SysML for various aspects of system modeling but does not
include them in a modeling method for a consistent development process. This hence
does not cover the need N 3.3.

We consider solutions using other means than SysML. In [25], a behavioral view is
defined, in which a DSMLs is used to specify the behavior. The behavior is expressed
through the specifications of inputs and outputs of the system, considered as a black
box. The way the system reacts is determined by modes specified in state machines.
This is a work in progress, for which a structure for the model of the system behavior
and a method describing the implementation of the solution are needed.

In [45], the Event-B language is used to specify a train system behavior. In this
language, the behavior is specified as the interactions of the systems with its environment.

CHAPTER 2. CONTEXT 65

The system itself is viewed as a black box. While is it possible to build a model of the
behavior this way, it is a formal method. Functional architects in BT lack the skills
to use it, as it is not their responsibility to build such a model. The issue here is to
capture and formalize the necessary information and then provide it to another team
than can build a model. The same information, separated from a formal model, has
to be communicated to suppliers, clients, etc. Solutions using event B or others formal
methods are limited by the need N 3..

According to [19], the current efforts to specify and model a system behavior at
the requirements analysis step lack a theoretical framework to ensure that the models
properly express the desired information. The same work indicates how to use SysML
elements, in particular state machines, to integrate simultaneous or concurrent behaviors.
It hence answer part of the needs N 1. and N 1.1.. However, there is no actual
structure upon which defining the behavior around the different state machines, and the
information used to specify the preconditions of the operations is not formally defined.
It hence does not cover the needs N 1.2, N 1.3. and N 1.4.

2.4.2 Checking the specifications for errors

Verification and validation (V&V) activities are based on MBSE, as we want them to
be conducted continuously, starting at the design of the system. We consider here the
state of the art for the need N 2. and those classified under it.

The way the specifications are checked in BT is done using common solutions such
as testing, simulation and execution. They are currently performed on SIL and HIL, but
not on MIL, as there are no models. Though new verification and validation solutions can
be developed and deployed, the first issue is to create executables models and integrate
them in a MIL solution, enabling to deploy known V&V techniques. Previous solutions
presented to specify the system behavior aim at creating an executable model.

In [46], a work regarding co-simulation with SysML models is presented. It is a work
of reference cited in OMG working groups. However, it is based on a physical architecture
and is hence dependent on a design. In [47], an Executable System Engineering Method
(ESEM), related to INCOSE’s works, is proposed to create executable SysML models to
perform a verification of the system requirements. Properties to be verified are expressed
from requirements and implemented in constraints blocks. Preconditions of use cases
are expressed using states elements. However, the information does not appear to be
directly correlated. Only one state value can be specified at a time as a precondition of
a given operation. It means only one state is defined for a given component, lacking a
formalization of what the state is, what it means and what is the information associated.
Again, the behavior is structured around a physical architecture. This solution cover the
same kind of needs as N 2.1., N 2.2. and N 2.3.. The way the semantic and the fidelity
to the system concepts is enforced is by construction: in order for the model to work,

CHAPTER 2. CONTEXT 66

the information expressed has to be consistent. This is an issue in BT. Specifications
have to be made by functional engineers, who are not responsible nor are qualified for
creating executable models, and work separately. The need N 3. is not satisfied.

[48] presents a tooled-process for the early validation of SysML Models. It highlights
the difference between models used for explicit specifications, here SysML models, and
others used for simulation, such as models created using SystemC or Modelica. The
proposed solution is to specify the system using SysML models, and then generate code
using those models to create Modelica models that can be executed. However, this
solution requires to use Modelica concepts in SysML, which is not compatible with BT
modeling process.

Supposing the specifications of the behavior can be put into model, there is still a
need to integrate and check them, as per the needs N 1.2 and N 2.. We saw that
there was a need to structure and correlate different behavior models, such as state
machines. We saw that SysML models themselves could be made executable, though
there may be a need to integrate other kinds of models. To perform such an integration,
there exists a standard, the FMI/FMU [49]. It enables to use a common format to
interface different kinds of models, and integrate them into a co-simulation. Methods
[50] have been developed to design complex system through the creation, management
and integration of models using such a standard. There are works such as [51] to use
the standard with executable SysML models. As we consider state machines, there is
also a standard dedicated to the exchange of such models: SCXML [52]. Although both
standards could be useful in BT case, there is still a need to create specification models
and have a theoretical framework to formalize, integrate and manage the information in
them.

In [16], a solution is proposed for specifying and testing user requirements using
a behavior-driven approach. Tests are generated using the scenarios specified. The
evolution of the requirements is taken in account and traced. This is an answer to the
needs N 2.1. and N 2.3., but not N 2.2.. The dynamic aspects are not covered. Tests,
while useful, can detect errors but not their absence.

There is a difference between checking the expected behavior and the behavior as a
whole. Assuming it has been specified, the unexpected aspects of the behavior, induced
from emergent phenomenons, have to be identified and/or prevented. [53] express the
issues in using formal V&V techniques at system level, as it may be not practical or
even possible to generate all possible interactions with a system or explore all of its
state-space. The proposed solution relies on tests and automatic properties generation.
It covers the needs N 2.1-3.. Testing is already the favored validation approach in BT
for system level analysis. Being able to properly generate properties to be checked or
relevant scenarios is an issue, which originates from the needs N 1.1-4. which are not
covered here.

CHAPTER 2. CONTEXT 67

2.4.3 Enabling communication of information between engineering teams

In order to enable or improve communication between engineers and stakeholders, it is
necessary to use the same vocabulary. In MBSE, the models created characterize real
aspects of the system developed. The information they contain has to correspond to
identified concepts enabling to capture and understand the information. This mainly
relates to the need N 3.1. for an ontology.

[54] presents the current state (as of 2012) of ontology in system engineering. His
work is referenced by the Ontology Action Team (OAT), which is part of the INCOSE
Model-Based System Engineering (MBSE) initiative. Graves highlights the needs for
concepts that can describe ”big systems” globaly and independently from the modeling
languages used, so that the information can be transmitted across the development
process. The definition fo a proper ontology hence relates to the need N 2.3.. Graves
also indicates that the ontology used and the way it is expressed in the models has to
be checked, which relates to the need N 3.2..

[12] presents an ontology developed for system design. The solution proposed relates
to the formal definition of an ontology, by defining concepts and their relationships. In
BT, the issue regarding the ontology is related to missing concepts and ways to apply
and check the ontology in models. The ontology used is to be deployed on a modeling
process, the information expressed in the models is not intended to be formalized in
documents and textual requirements yet. The issue of defining and using an ontology in
a modeling process is presented in [55]. Models express information regarding a given
domain independently from the system represented. SysML enables to represent part
of the behavior or the structure of a system, independently of the system itself, its
abstraction level, or the domain to be characterized at a corresponding scope or step of
the development process.

Conceptual modeling is something that is evolving and is increasingly needed in
modeling and simulation [22], as it enables to characterize aspects of the real system
while integrating considerations from different domains and scopes. System concepts
associated to abstract models can serve as a foundation to less abstracted information
and models. Mastering the expression of concepts in models allows the verification of
their semantic and ensure that everyone creates and understands models the same way.
The needs N 3. and N 3.1. are related to the need N 2. and those defined under it.

Regarding the need N 3.2., we already saw that some solutions were to build exe-
cutable models, counting on the fact that the information expressed had to be coherent
to enable the execution. This is neither suited to BT, who needs to separate specifica-
tion from execution, nor it is reliable, as the information is not formally expressed. This
prevents a proper analysis and communication of the information in the models or their
reutilization. [56] proposes to use the semantic web[57] technologies to support the de-
velopment of systems using SysML models. Such technologies allow to share data linked

CHAPTER 2. CONTEXT 68

to formal ontologies. However, in BT, the ontology is not formalized in the first place,
and there is no structure or process upon which sharing data. In [58], OCL constraints
are used to verify UML models. It is applied to check that a specified software, or at
least the code generated from the related diagrams is consistent. It does not relate to an
ontology expressing system concepts through elements of representations, which would
need to be supported by a method. A more recent work [59] shows that the use of OCL
constraint to check UML models is still a work in progress. Other works such as [60],
still in progress at the date of the thesis presented here, show the use of such verifica-
tion mechanism coupled with ontologies to check the application of system concepts in
models. This has been independently considered in this work, as shown in chapter5.

The state of the art regarding existing definitions of states and modes and related
to the needs N 3.1.1-4. will be studied in chapter 4. An example of similar needs and
applications can be found in [61]. This work present the definition of an ontology related
to systems states and applied to SysML models.

The needs N 3.3. and N 3.4. appears in the projects already presented. In the case
of BT, answering them requires to answer the other needs and hence are not considered
separately for the state of the art.

2.5 Contributions

The needs presented here are answered in the three contributions of this thesis. A short
presentation of the contributions was given in the introduction. We present here the
needs to be addressed by each contributions.

2.5.1 Concepts of states and modes

N 1. Specifying the train behavior.

N 3.1. Define an ontology that enables us to express system concepts in all models

N 3.1.1. Define the concepts of states and modes.

N 3.1.2. Define the link between states and modes

N 3.1.3. Use state and mode concepts to model the system and its behavior

N 3.1.4. Manage information expressed in states and modes

N 3.4. Express information at the SOI’s level of abstraction.

CHAPTER 2. CONTEXT 69

2.5.2 Model verification method

N 2. Checking the specifications for errors

N 2.3. Ensure traceability and continuity of specifications and validation results

N 3. Enabling communication of information between engineering teams.

2.5.3 Behavior verification method and model

N 1. Specifying the train behavior.

N 1.1. Specify dynamic aspects between use cases.

N 1.2. Correlate the information expressed in different scenarios and use cases.

N 1.3. Formalize the circumstances enabling the execution of each use case.

N 1.4. Define a structure around which organizing the model of the behavior.

N 2. Checking the specifications for errors

N 2.1. Define V&V requirements for the integrated system behavior

N 2.2. Provide V&V solutions of the behavior based on SySML models

N 2.3. Ensure traceability and continuity of specifications and validation results

N 3. Enabling communication of information between engineering teams.

N 3.2. Develop a model verification solution according to the ontology and mod-
eling method provided

N 3.3. Implement the solution in a method supporting the system development

Chapter 3

Background: system theory and
engineering

The study presented here revolves around systems, their behavior and the development
process of both. Those should be properly defined. One of the goal of this PhD is to
represent a system and its behavior. In order to do so, we analyze the theory around
system.

The notion of system itself is something that goes beyond the scope of systems
engineering, where it can already change depending on the sources or solutions developed.
The intent here is to model the system and its behavior as part of an engineering process,
falling under the scope of MBSE. As shown in the INCOSE roadmap in Figure 1.2, there
is no definitive MBSE theory, concepts or formalism, and defining them constitutes a
research topic. We consider here scientific studies, established theories and concepts to
capture the context and needs of our study.

To have a better idea of the concept of system in general, we turn to the general
systems theory, developed by Bertalanffy [62]. The general system theory forms the
basis of this field of study [63]. It contributed to the development of systems engineering
[64, 63, 65], which in return improves the scientific approach and definition. Theory
improves practice and practice improves theory, a dynamic shown in the System Praxis
Framework developed by INCOSE and ISSS [66].

We explore in this chapter the general system theory and current systems engineering
approaches on which we can base our solution.

70

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 71

3.1 System theory and definition

Systems engineering can be considered as one of the applications of system theory. We
are interested here in the general system theory, and will consider in particular the work
of Le Moigne [67]. Le Moigne [67] explains the general system theory, its history and
context, and proposes a system modeling approach based on it, which relates to our
goal. We will compare it with more recent works, such as [68].

3.1.1 System concept

Le Moigne’s definition of a system [67] has been intended as a description, in order to be
compatible with most definitions of the concept. It is defined as : “an active and stable
object evolving in an environment in relation to a few goals”. An object that is “active”
conduct one or several activities, which are defined as ongoing functions. “Stable”,
regarding the other form of the definition, refers to the structure. A more detailed and
decomposed definition of a system is provided, and can be roughly translated as follows:

• Something (meaning anything we assume can be identified)

• in something (an environment)

• for something (purpose or project)

• does something (activity = operation)

• through something (structure = stable form)

• that is transforming over time (evolution).

The terms in the definition are intentionally vague, expressing the concept in the
natural language with the key terms linked to concepts detailed in the theory and put
in parenthesis. A system as presented in the theory can correspond to any object, entity
or phenomenon in the universe that we want to consider and study. It corresponds to a
scientific method and an epistemology.

Many definitions of a system, and in particular a complex system, define its concept
as a group of elements linked by relationships. That is what the term “structure”
refers to: “Structure defines components and their relationships”[68]. Referring to the
structuralism paradigm, Le Moigne explains that there are properties induced by the
integration of all elements of a structure that go beyond the sum of the properties of
each individual element.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 72

Figure 3.1: Systemic paradigm [67]

A first comment regarding this theory is: even if we do not define nor consider the
different elements forming the system, meaning the structure, we will have to consider
the properties induced by them. A property, as defined in [1], is a ”responsibility that is
an inherent or distinctive characteristic or trait that manifests some aspect of an object’s
knowledge or behavior”. We assume here that such a definition is suitable to the meaning
intended by Le Moigne and Bertalanffy.

The induced properties are specific to the system, as they result from the integration
of different elements that do not possess them individually. We hence consider that we
always study a structure, even if none of its elements (except for the system containing
them) are represented.

Le Moigne bases his definition on the system paradigm, shown in Figure 3.1.

The general system theory is the theory of object modeling [67]. To conceive or study
a system is to represent it, by the way of models. The definition of a system proposed
by Le Moigne provides five concepts (activity, structure, evolution, environment, goal)
intended to support the creation of models. Environment and goals are external to the
system, which is characterized by the notion of activity, structure and evolution. Those
are found in recent approaches, such as system thinking, developed from the general
system theory:

“The most basic relations in systems thinking are function, structure, and process.
Briefly, function is contribution of a part to the whole; structure is an arrangement
in space; and process is an arrangement in time. These three relations as essential to
systems thinking. . . . a design approach dealing iteratively with structure, function, and

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 73

process is the ”enabling light” of systems methodology. Structure defines components
and their relationships, which in this context is synonymous with input, means and
cause. Function defines the outcome, or results produced, which is also synonymous with
outputs, ends, and effect. Process explicitly defines the sequence of activities and the
know-how required to produce the outcomes. Structure, function, and process, along with
their containing environment, form the interdependent set of variables that define the
whole.” [68]

Functions, according to Ing, are objects with a goal, an intent, a usefulness. Their
outputs are used for one or several purposes. But an input does not necessarily come
from a function, hence why there are inputs associated to the structure: they come
from properties that are pieces of information which can be useful but have no goal or
usefulness on their own. They require to be processed and/or are correlated with others.
What the system does or produces depends on both the functions performed and the
properties known or perceived.

The concept of activity is complementary of the structure. An activity, rather than
defining a function, defines an-on going function, meaning a change conducted over a
period of time. A structure is considered at a point in time. The activities describe
what the system does over time, the structure describes what the system is (in term of
element composition and properties) at a given point in time.

A structure, through its properties, is used to define the functions that can be ex-
ecuted. The activities performed hence depend on the way the structure changes over
time. This is characterized by the concept of evolution. Both the structure and the
activities evolve over time. The structure changes over time, enabling new functions or
preventing others to be performed. The activities themselves can change the structure
as they are performed. The evolution of both the activities and the structure are related
but distinct.

In BT, the evolution of the system activities is specified in scenarios, be it in train
scenario using activity diagrams or use case scenario using sequence diagrams. We saw
that the issue in these representations was that the execution of activities was conditioned
by the circumstances in which the system is, which were not formally specified.

To study the evolution of the structure is to study the evolution of its properties,
hence of the system properties. We argue that in the case where we do not define
a structure for the system, we still need a way to represent its properties. Such a
representation could be used to express the conditions for which the activities can be
performed.

We have defined the concept of behavior as “the peculiar reaction of a thing under
given circumstances”. To specify the system behavior is to specify what functions it can
perform at a given point in time. Considering the definition of a system by Le Moigne,

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 74

we see that defining the behavior requires for us to link the evolution of the system
structure and the evolution of the system activities. In order to do that, we would need
a representation of both.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 75

As activities are performed over periods of time, they are described inside processes.
The evolution could be seen here as replaced by the concept of process, but it is specified
in the theory that it is the activities that evolve through processes, not the structure. Le
Moigne defines the concept of process as a physical whole that can change or transform
over time, referring to the structure, as shown in the relation in Figure 3.1. He references
another definition, according to which any change of matter, energy or information over
time is a process. Those two concepts of a process may seem incompatible, though it
is not the case. A process has to be understood as an evolution over time, be it in the
system activities or its structure.

In system thinking, functions are highlighted instead of activities. Rather than con-
sidering ongoing functions, the focus is put on what happens when they are performed.
We shall adopt the same point of view. As we want to analyze the system behavior, we
are interested in what the system can do instead of describing what its does, something
that has already been described in train scenarios.

Le Moigne presents as a fundamental hypothesis of System Theory the idea that
any model of an object behavior can be conceptualized as a process. However, this
can lead to some confusion, as we saw that we need to express the evolution of both
the system properties and of the realization of its functions to represent its behavior.
Though related, those evolutions are distinct. We need to specify two processes that
influence each other. Those two processes need to be part of a same model.

3.1.2 System representation

Our goal is to represent the system and its behavior. We need to create two processes
that describe the evolution of the structure and the evolution of the activities. Those
two processes influence each other.

A system is never completely represented, explained or understood. System theory
is based on the assumption that an exhaustive, true, predictable representation of the
system is not possible. What can be done is a description fitting the needs and purposes
of the people conceiving a system. Le Moigne considers that what matters for the people
considering a system is what the system does. While it may not be possible to capture
everything the system does, the system activity and outputs are described and associated
to goals. They are defined by the fact they are given purpose. They correspond to what
the system is perceived to do in the vision of the one defining the system.

Regarding the structure, we saw that a representation of the elements composing the
system was not always available or desired. What matters is in fact the properties of the
system. Those properties are expressed through information characterizing the system.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 76

Assuming a system is not predictable, or at least dependent from the environment,
assessing the current situation and information of the system requires to consider it at
a point in time. This is why the notion of state is developed.

The concept of state is not clearly defined. It is presented by Le Moigne as a “pho-
tography” of the system behavior at a point in time, obtained by considering inputs
and outputs. It has been established that knowing the behavior of the system requires
knowing its state. The proposed definition of state is empiric, the states are observed
or deduced, not defined. A state is a perception of what the system is at a given time
by the one defining it. As the system functions are defined with a goal, we define states
which have a utility toward the realization of the system functions.

The system is defined in relation to its environment, so we can define state regarding
the situation of the train in this environment. However, this is not enough for describing
its behavior. The system has its own internal state resulting from its evolution through
time. Without defining the elements composing the system, it is necessary to consider
an internal state of the system.

There is no intent toward making the system evolve. The intent is to model the
evolution of the system capabilities. States are a description of what enables the system
functions and capabilities (the choice of action available) to evolve and be performed.
The process describing the evolution of a system structure, expressed using states, sup-
ports the process describing the evolution of the system capabilities. The process de-
scribing the evolution of state is a description of the system situation. The process
showing the evolution of capabilities should specify the relationship between conditions
on the states and functions available. This last process is the one that correspond to a
description of the system behavior.

We already know that the system and the evolution of its properties can be described
by the evolution of its states. However, we did not establish how to represent the evolu-
tion of its capabilities. We need to define a modeling element that links the realization
of functions to conditions on the current state of the system.

A system is something assumed to exist and susceptible to be identified. To define it
is to describe it, as the notion of system is associated with the notion of representation.
It means that by considering a system, one already has knowledge, or at least an idea,
of what it is, if only in relation to its environment. If we are to conceive a new system,
describing, meaning specifying its structure, state and properties, is not enough. We
will have to specify its inner mechanisms, even at a high level of abstraction, for it to
be consistent. This changes the goal from describing to specifying a system. We have
to consider the modeling of a system from an engineering purpose and point of view.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 77

3.1.3 Method

A method can be understood as providing a way to achieve a goal. Here we consider
a method as a way of representing a system. The general system theory is a scientific
method that is presented as a modeling method. Coming back to the issues considered
in this work and presented in the previous chapter, we need a way to represent an
integrated system.

System theory and systems engineering are both linked by a same need: representing
a system. We present here the modeling method described in the general system theory
and developed by Le Moigne.

Le Moigne defines his method using four principles that he opposes to those of the
scientific method defined by Descartes [69]. Those four principles are:

• Relevance: any object considered is defined depending on the user intent. If the
intent changes, so do the definition of the object.

• Globalism: the object studied should be considered as an active, incorporated part
of a bigger whole. It should first be perceived globally.

• Teleology: study and understand an object behavior through the goals associated
to the object.

• Aggregation: instead of an exhaustive representation, aggregate elements from an
object that are deemed relevant and sufficient to the study.

Our need in integration can be found through these four principles: considering the
system as a whole by aggregating relevant information and elements with a specific goal
in mind (behavior representation and validation).

According to Le Moigne, a model is obtained using a representation system. We
already described the elements used by Le Moigne: processes, states, activities, structure,
functions. Those can be found in system thinking.

According to Ing, a SOI is composed of properties and a behavior, and is considered
inside a bigger whole [68]:

“In the systems approach there are also three steps: 1. Identify a containing whole
(system) of which the thing to be explained is a part. 2. Explain the behavior or properties
of the containing whole. 3. Then explain the behavior or properties of the thing to be
explained in terms of its role(s) or function(s) within its containing whole.”

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 78

Following this approach, a system is first to be considered in an environment. It
is then considered itself as a whole with properties and behavior. Elements composing
the systems are then considered in the context of the system containing it and the
other elements at the same level of abstraction. Each element is to be considered an
independent whole with a behavior and properties. This is similar to a holonic structure
[70]. A holon is an element that can be considered as both an independent object and
as a part of a bigger whole. In this case, elements (holons) of a given level of abstraction
are contained by a bigger whole with properties and a behavior induced by their union
and bigger than their sum.

From a systems engineering point of view, information regarding the environment is
either known or provided, as it is the system that is to be developed. In BT, external
systems are either known or are the responsibility of external providers. Their informa-
tion and models are either received or to be provided later. The behavior of the user(s)
is specified in scenario but cannot be specified or predicted as a whole. Engineers in
BT have to provide a system that satisfies given expectations. This is why there is a
need to know what the system can do, to ensure that the expectations are correctly
integrated and satisfied, without creating unknown or unwanted behaviors. Ideally, only
the expected interactions should generate a response from the system, which should be
constrained accordingly.

3.2 Systems engineering

“Science seeks to understand and describe properties and relationships of things in the
world while engineering strives to understand these properties and relationships in order
to apply them to solutions to engineering problems. Engineering then will create new
properties and relationships in their designed artifacts, properties including such things
as behavior, functionality, performance, structure, economy, practicality, and so on.”
[65]

Scientific theory does not pursue the same goal (understanding, explaining) as engi-
neering (solving problems, creating solutions). As such, merging theory and engineering
is an issue in itself. It is illustrated by the System Praxis Framework developed by
INCOSE and ISSS [66] to address the problem. As systems engineering is based on the
general system theory, the analysis made in the previous section can be applied here.
However, aspects specific to engineering activities have to be considered.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 79

3.2.1 System concept

Conceiving a system in systems engineering is done with a different mindset than the
one in system theory. The concept of system in systems engineering is more specific that
in system theory, as the goal is to conceive and develop systems for human purposes.
The definition used here is the one provided by INCOSE [41], which is supported by the
standards [1] and derived from the general system theory. According to this definition,
as system is:

“...an integrated set of elements, subsystems, or assemblies that accomplish a defined
objective. These elements include products (hardware, software, firmware), processes,
people, information, techniques, facilities, services, and other support elements.”

Considering this definition, elements constituting a system can be traced to different
disciplines required to develop them. Developing individual parts of a complex system
may imply different types of engineering activities specific to these elements. It means
that it is possible to have information, and even requirements, on what may constitute
the system. A system is not born from nothing. Engineers generally have an idea of the
system they are to develop. Capturing the right information and expectations regarding
a system-to-be is the first step in order to develop it.

Each engineer working on the system expresses an information about it, based on
requirements, specifying something desired, relevant or necessary regarding the system.
From then, it can be assumed that the information regarding what is expected from the
system is given. Knowing if these expectations are right or complete is an issue, before
worrying if these expectations are satisfied. In both cases, it requires having an idea
of the system resulting from the expectations. Expressing expectations is one thing,
expressing the system expected is another.

The earlier an error is made (and not detected), the more the cost [9]. Error in
the very design of the system are hence the more damaging. From there comes the
need to integrate the information expressed regarding the system, in order to obtain a
representation of the whole system, at least from a given perspective such at its functional
behavior.

Integration is not something that is just performed, it is something that is specified.
Let’s consider two different expectations regarding the system that can affect a same
aspect of the system and can be realized in the same time. There are different ways
to integrate them: letting them happen at the same time, making one overruling the
other, etc. For example, a project in BT had two use cases that related to the behavior
of screen wipers: one enables to activate and select the speed of the wipers, while the
other washes the screen and activates the wipers for a short cycle to remove the water.
No speed was specified for the wiping cycle during wash.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 80

There were no specification on how those two use cases worked together. If the wipers
are already active, is a cycle launched? Does it deactivate the wiper afterward? Can
the cycle be interrupted by reducing the speed of the wipers to zero? Answering these
questions is the responsibility of the functional architects, who lack a way to identify
such conflicts. There is a need to know which use cases can happen at the same time in
given circumstances.

Parallelism and concurrency between functions is one example of specifying integra-
tion. To apprehend what the system is and how it behaves, it is necessary to specify
how to put in relation the functions, information, parts and properties regarding the
system. Another form of integration corresponds to the definition and restriction of the
system states. The system behavior depends on the circumstance the system is in. The
circumstances are expressed by the system states. To restrict the system behavior to
what is expected and/or possible, the circumstances, hence the possible states, should
be constrained to only allow the behavior specified. Those constraints correspond to
properties of the system.

System properties are more than the sum of the properties of its elements. It is also
true for its behavior. It is the principle of emergence [8]. According to Abbott, “the
properties and behaviors of complex system are not describable as a simple, closed-form,
mathematical function of the properties and behaviors of the system’s components. Typ-
ically, the best one can do is to propagate the descriptions of the component interactions
and see what happens at the system level.” [8]. As said earlier, the system is studied
before its elements. If emergence is to be analyzed after developing the group of elements
causing it, we see that in practice there is a need to anticipate it. Specifying the system
behavior is the same as specifying the emergent behavior of the elements it is composed
of.

A group of elements with their own behavior and properties produce emergent prop-
erties and behavior as a group that have to correspond to the ones specified for the
system. What is to be avoided when developing the system is missing or adding prop-
erties or behaviors. There is a need for traceability between elements of the system and
the system itself:

“Early pioneers of SE and software engineering, such as Yourdon (1989) and Wymore
(1993), long sought to bring discipline and precision to the understanding and manage-
ment of the dynamic behavior of a system by seeking relations between the external and
internal representations of the system. Simply stated, they believed that if the flow of
dynamic behavior (the system state evolution) could be mapped coherently into the flow
of states of the constituent elements of the system, then emergent behaviors could be
better understood and managed.” [41]

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 81

This can be linked to system theory, Le Moigne using this notion of state evolution
and flow. States of the system elements shall be captured and traced to the system state
to check that the same properties and behavior are enforced.

3.2.2 System representation

There is a need of state processes, behavior modeling element, integration and traceabil-
ity in the representation of the system. This all relates to the use of models. A model
is a representation of the system that is created for the purpose listed in the definition.
The standards [1] gives several definitions of model:

• “A representation of a real world process, device, or concept.”

• “A representation of something that suppresses certain aspects of the modeled
subject.”

• “A semantically closed abstraction of a system or a complete description of a
system from a particular perspective.”

The need to represent system to define them is the reason systems engineering evolved
toward a model-based approach, the MBSE. It is defined by INCOSE as:

“Model-based systems engineering (MBSE) is the formalized application of modeling
to support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and
later life cycle phases.” [4]

MBSE is there to support engineering activities in the development of system through
the use of models and methods. As engineers have knowledge regarding the system they
develop, they need to express it. The information and description of the whole system
often only exist in the mind of engineers, as there is a lack of solution for describing and
integrating the system in models. The issue is that engineers do not work alone and
need to exchange and communicate. More importantly, information and specifications
regarding the system have to be formally defined, otherwise they are overlooked or
subject to interpretation and cannot be part of a modeling method. Describing the
system state and behavior has to be done through dedicated models.

The information expressed in a model should correspond to a vision and concepts
that characterize the expected system:

“A system concept should be regarded as a shared “mental representation” of the
actual system. The systems engineer must continually distinguish between systems in
the real world and system representations.” [41]

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 82

Figure 3.2: Relations between conceptualization, Model, Modeling Language and Spec-
ification [71]

Producing a model implies using one or several modeling languages. A modeling lan-
guage possess a syntax, supported by a semantic, illustrating concepts. Those concepts
related to the system to be represented. The same concepts can be expressed in differ-
ent modeling languages, but the models obtained won’t contain the same information or
semantic. This is expressed in Figure 3.2.

Engineers following a same modeling method can produce different models, inter-
preted differently. As the development of the system is done by different teams, it
involves people from different backgrounds and skills, using sometimes different model-
ing languages. There is a need to manipulate the same concepts and express them the
same way in a given model and language.

Following the steps of the system approach defined by Ing, representing the system
and its properties would be done using states, which then enable to define the behavior.
The behavior is often described using processes and evolution of the states and activities,
but what we need is a way to specify it. Description and specification are distinct
activities, as we want to describe the system expected without taking decisions on the
design and only then start to specify it. However, those two activities are not clearly
separated:

“As complexity grows, the line between specifying behavior and designing behavior is
blurring. To the extent the software design reflects the systems engineer’s understanding,
the software will perform as the systems engineers desire.” [14]

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 83

By describing what is expected from the system and its behavior, we want to describe
the whole system itself. By doing so, we are sure to know what is the desired system,
something necessary to specify and validate a design. Integrating the information of the
expectations require to specify the logic by which they constitute a coherent whole. The
integration itself is hence both a description and a specification. Coming back to what
is done in BT, we see that such an integration is first realized in the operability analysis,
which is a step that constitutes the transition between requirement and design activities.

A key concept to system modeling is the notion of state, which is as critical in
engineering as it is in theory:

“Understanding state is fundamental to successful modeling. Everything we need to
know and everything we want to do can be expressed in terms of the state of the system
under control.” [14]

The concept of state has to be clearly defined and correctly expressed in any model,
with the information traced.

Modeling the evolution of the system states is not enough. It has to be linked the
evolution of the system capabilities. The behavior is not just what the system does, it
is what the system does in which circumstances. To describe and/or specify the system
behavior, we need an element that links the system structure with the evolution of its
actions. We will now refers to this element as mode.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 84

3.2.3 Method

As said previously, the difference between the scientific modeling method and an engi-
neering modeling method is that the scientific method only needs to describe a system,
whereas an engineering method needs also to specify a system. In addition to of pro-
viding intents and context, we present here systems engineering methods as a mean to
complete what is lacking in the scientific one for our purpose. We do not pretend to
make a full analysis of how a system is developed, but we want to show an overview of
the design process of the system behavior.

As BT SysMM is based on the ISO/IEC/IEEE 152882015 standard, we consider here
the different processes it specifies as part of its development:

• Business or mission analysis process.

• Stakeholder needs & requirements definition process.

• System requirements process.

• Architecture definition process.

• Design definition process.

• System analysis process.

• Implementation process.

Our focus is put on the Stakeholder needs & requirements definition process and the
System requirements process. Those steps are described but not associated to a modeling
method. The reason for that is that there is no official modeling method in BT. Such
a method depends on a modeling language and concepts associated to it. SysML is a
modeling language that can be considered as a standard, but it does not have an official
modeling method. The reason being that SysML is made to be customized, allocating
specific system concepts to its modeling elements so that it correspond to the user’s
needs.

There is no transition steps between requirements specification and design. We saw
that to integrate the system expectations meant to specify the integration itself. This is
why the operability analysis in BT is in this context an innovation of BT and constitute
a crucial point in our approach.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 85

A system goes through different stage in its life-cycle. Such a life-cycle is specified
by the ISO/IEC/IEEE 24748 1 2016 standard:

• Concept stage.

• Development stage.

• Production stage.

• Utilization stage.

• Support stage.

• Retirement stage.

We specify specification solutions at the concept stage, where the information spec-
ified cover the utilization and support stage of its life-cycle.

3.3 Synthesis

In this chapter, we positioned ourselves regarding the system theory and practice. We
provide the context and the scope of our work regarding system development. We also
justified and detailed some issues and challenges presented in the previous chapter, with
hints to the solution needed. In particular, we saw that in order to represent, specify
and integrate a system and behavior, we need to:

• Define the concept of state applied to systems engineering activities.

• Define a concept for behavior modeling, linked to the system states.

CHAPTER 3. BACKGROUND: SYSTEM THEORY AND ENGINEERING 86

Figure 3.3: Composition of a model of the system and its behavior

According to our analysis, a representation of a system and its behavior in an en-
vironment would be decomposed into a structure of system elements, with the global
system as a root of the structure. Each element would be composed of a behavior and
of evolution states. This representation is shown in Figure 3.3 in a simplified way, not
representing properties, constraints, relationships between system elements of a same
level of abstraction or dependencies between state and behavior. Those details will be
addressed later as part of the solution developed. A definition of the concepts of states
and modes is given in chapter 4.

Part II

Contributions

87

Chapter 4

Concepts of states and modes

We saw in the previous chapters that the concept of state is essential when modeling
a system and its behavior. The issue is that it is a concept that is not clearly defined,
be it in the theory, modeling language or in methods. BT makes an extended use of
states in its train development process, but the term can correspond to different kinds
of information, modeling elements or utilization.

We already highlighted the notion of state in system theory. We now want to further
explore this concept in systems engineering. We first consider its use in the standard
modeling language SysML, which comes from UML [72]. What a state represents re-
garding the system or its behavior in SysML is not specified. It is an issue raised by
Naumenko in his thesis [73] regarding UML: “existing UML semantics are very ambigu-
ous in presenting relations between models constructed using the language on the one
hand and the subject that is being modeled on the other hand”. While the representation
and semantics of states regarding the model are specified in the standard, it is not clear
what a state actually represents regarding the system to be modeled. This is the gap
discussed in the previous chapter and shown in Figure 3.2.

Aside from UML, there are “state” elements or concepts used in different languages,
tools and methods with different semantics, such as UPPAAL [74] or in Abstract State
Machines (ASM) [75]. There is no consensus on what a state is [76, 77], and it is often
confused with the notion of mode. The definition of mode is also debated. When referring
to the ISO/IEC/IEEE 24765 standard, which references other standards, we see that
there are a variety of definitions of what a state is.

There is a confusion between states and modes but both are widely used in systems
engineering. It is necessary to define both concepts in the scope of our work. Bom-
bardier Transport (BT) uses states and modes in its models but lacks a definition of the
corresponding concepts.

88

CHAPTER 4. CONCEPTS OF STATES AND MODES 89

This leads to a difficulty in capturing and integrating the right information (such as
preconditions of functions) in executable models, which are themselves state machines.

Beyond the definitions of states and modes, we are interested in their utilization.
While in SysML the states are used to model a behavior, we see in the definitions
proposed by Wasson [76] that we can define different kinds of states and modes, capturing
different information. Such information can describe or impact the behavior of the
system without being able to fully describe, condition or model it.

When modeling the system behavior using a SysML state machine, the information
used for the guards of the transitions has its own evolution. This evolution is done
through transitions with their own guards. This leads to the creation of other state
diagrams or constraints on variables characterizing information about the system but
not its behavior. Referring to the general system theory presented in the chapter 3, the
need to consider two different evolution relates to the issue of modeling the evolution of
the system activities and the evolution of its structure. Those are two different issues,
and we should use two different modeling elements to express them, keeping in mind
that they are correlated. We established that the states are used to describe the system
properties associated to its structure. We need a different kind of element to specify the
behavior: the modes.

The goal of this chapter is to define the concepts of states and modes with the goal
of modeling a system and its behavior in an integrated way.

CHAPTER 4. CONCEPTS OF STATES AND MODES 90

4.1 Concept of State

4.1.1 State of the art

We consider several definitions:

• According to the ISO/IEC/IEEE 24765 standard, a state can be a characterization
of the system at a given time, the value of the variables defining the system,
a condition to a behavior or a function, something that determines the set of
functions that can be performed, and other meanings.

• According to a systems engineering handbook supported by INCOSE [41]: “A
system is in a state when the values assigned to its attributes remain constant or
steady for a meaningful period of time”. It is otherwise specified that the handbook
refers to the ISO/IEC/IEEE 24765 standard for vocabulary.

• According to Naumenko [73], a state is one of two concepts at the basis of the
semantic he defines, and its definition is: “an information about a thing (object)
at a given time (point in continuum) inside a context (time continuum)”.

• According to [76], a state is “An attribute used to characterize the current logistical
employment, status, or performance-based condition of a system”.

• According to common definitions in English and French dictionaries, a state is the
“way of being” of a thing, in our case a system, his environment, etc. It is also
referred as a condition at a given time.

Not all definitions available or considered are given here, only a representative group
issued from formal or common sources. Some sources cited in this document, such as [77],
have already done similar work and reference different definitions, and can be consulted
as a complement.

Besides the definition of states, we consider different kinds of elements used to rep-
resent them. In many finite state-machines such as UPPAAL, we have one state active
at a time inside a state space without hierarchy or concurrency, at least in one diagram.
In UML and SysML state machines or in Harel statecharts [78], we have complex state
structures with concurrent states in one diagram, meaning we can have several states
active at the same time. In Abstract State Machines, or ASM [75], the state of the
system is represented by a set of variables, called states variables, and a state is the val-
uation of these variable at a point in time. This can be linked to one of the definitions
found in ISO/IEC/IEEE 24765. As in state diagrams, ASM enable to define transitions,
conditions and constraints.

CHAPTER 4. CONCEPTS OF STATES AND MODES 91

The state definition in UML can not be used as a definition of the concept. As per the
analysis made by Naumenko, these elements are not directly associated to the system of
study. In addition, UML defines states to model a behavior in what is called “behavioral
state machines”, but we can define states that affect the behavior without modeling it.
Taking the example of a train, we can define a state that indicates the current energy
supply, be it internal or external sources. It will affect its operability and hence its
behavior but does not condition capabilities directly. States can capture information
used to condition capabilities. This information cannot be used to directly model the
behavior, as each piece of information could be used as part of the preconditions of any
capability. To represent the behavior, we have to define elements characterizing the
execution of capabilities and not the information used to allow it, which seems to be
the goal of the state machines in UML. This is supported by the definition found in
the UML 2.5.1 standard [72]: speaking of the State model element,“a state models a
situation during which some (usually implicit) invariant condition holds”.

4.1.2 Analysis

Cross-referencing the definitions given above and excluding their use to express the
behavior directly, we can establish a few characteristics of states:

• They characterize a thing (e.g., a system).

• They relate to a specific kind of information, knowledge domain or way of being
regarding this thing (e.g., operations, readiness, energy, . . .).

• They are evaluated or considered at a given time.

The most appropriate definition would be the one proposed by Naumenko [73], as
it is high level, relates to the object of study that we want to model, and summarizes
the main characteristics of states that are common in the definitions considered. In
addition, it was thought as a core element of a semantic used to give a common meaning
and understanding in the definition of models regarding the system they represent. It is
one of our objectives regarding modes and states: to make it clear how to define them
and what they represent regardless of which language or tool we use. It also presents
the advantage of considering a temporal context in which states can be defined, which
should be the system life-cycle. We will keep this notion of context as it can be applied
to the other definitions.

Naumenko considers two elements to represent the information regarding an object
(system): state and action. State is here an information characterizing the system in at
a point in space and time. An action characterizes the information linked to an evolution
in space and time. This is illustrated in the Figure 4.1. We can make here a parallel with

CHAPTER 4. CONCEPTS OF STATES AND MODES 92

Figure 4.1: State and action concepts to characterize an object in space and time [73]

the system theory where states characterize the system at a point in time and functions
or activities characterize a change. We do not consider the notion of space as the system
is an abstract element in our scope.

The definition given in the INCOSE engineering handbook [41] seems to contradict
the notion that a state is considered at a point in time, but we argue that it is not
the case. A state is evaluated at a point in time. If we get the same values or few
variations of them in regard of the information characterized during meaningful periods
of time, then they can be abstracted as discrete values. Searching for persistent values
or intervals of values can be a criterion to create state diagrams or other such models,
but we consider that is it not a part of the state concept definition.

The notion of information is crucial. An information is a discriminated piece of
knowledge that can be defined or acquired when considering an object. The state of the
system is often considered to be a photography of a system at a point in time, regardless
of the information considered. But the description of a system contains a finite amount of
information. A state of a system modeled evaluate either a specific piece of information,
or all of the information we associate to the system over time in our representation. We
consider that a state always characterizes a finite amount of information that can be
identified.

CHAPTER 4. CONCEPTS OF STATES AND MODES 93

A state is also an abstraction. Even if we measure physical values to define it, those
are interpreted and assimilated as an information. The point of view from which the
state is defined is also important. If we consider an unmoving train and want to evaluate
its operational use, then depending on the point of view, it could be considered “parked”,
“waiting”, “in a mission”, “reserved”, “ready for departure”, etc. When evaluating an
information through the measure of physical attributes, the point of view indicates who
can access the information: the train control system, the pilot or an external monitoring
system. Depending on how the information is accessed and on the scope of study, there
can be differences in the information received.

In SysML state machines, we can have several “states” active at the same time in a
given diagram. However, an active state is either one of the higher level state, or one
of the sub-states contained in a higher level state or a concurrent partition. There can
be only one active state in a group of states or sub-states at a same level of abstraction
and per concurrent process. We hence consider that each of these active states exist
in their own context and characterize a different kind of information. It enables us to
keep the definition of states as an evaluation of information in a time context, though
defining several types of states characterizing different targets in a same diagram may
not be relevant.

Engineers try to define a hierarchy of states. For example, Wasson [76] considers
that system states (characterizing the use being made of the system) contain operational
states (characterizing the mission readiness of the system). But it seems logical that a
system could have the same readiness status in two different missions. Acknowledging
that Wasson’s scope is oriented to the definition of scenarios and mission specifications
phase by phase, we consider that in general two types of state of a same object charac-
terize different information that may have dependencies and constraints between them
but exist at a same level.

4.1.3 Definition

Using the definition proposed by Naumenko, we consider the concept of state as “an
information about a thing at a given time inside a context”. In order to be independent
of the representation of a state, we want to use informal attributes to characterize it.

In order to adapt our definition to the development of complex systems, we specify
two attributes impacting the information characterized: the point of view and the level
of abstraction. We saw that the definition of a state was different depending on who is
considering the information regarding the object characterized. The level of abstraction,
here divided into system, subsystem and component level, enables us to define a same
information at different level of details along the development process. For example, a
same state of the train energy supply can be evaluated as “internal supply depleted”,
“battery depleted” or a voltage measure depending on the level of abstraction.

CHAPTER 4. CONCEPTS OF STATES AND MODES 94

This is also how we could ensure traceability of information and state along the
development process, by refining states. Refining a state means lowering the level of
abstraction which the information is expressed with. According to this analysis, the
attributes necessary to define a type of state are given in Table 4.1.

Attribute Definition

Target The characterized entity
Information The type of information considered
Context The time scope under which the state exists and can be defined
Abstraction level The level of abstraction of the element linked to the information considered
View The point of view by which the state is expressed

Table 4.1: Attributes used to define a state type

We then link this definition to concepts enabling to model states using different
languages and modeling objects:

• A type of state is a type of information linked to the object it characterizes and
the time context where both the information and the object are defined. A type
of state is defined using a set of states variables.

• A state variable is used to express the information characterized by a type of state.
A state variable has values defined over the whole time context where the type of
state is defined.

• A state space is the set of all possible values of the state variables of a type of
state.

• A state is the evaluation of the state variables of the type of state it belongs to.
Each Element of a state space corresponds to a possible state.

We do not consider transitions, initial states, guards, etc. in our definitions. Our
goal is only to know what a state represents regarding the object to model and what are
the kind of elements needed to model it. The representation and evolution depend on
the modeling language.

CHAPTER 4. CONCEPTS OF STATES AND MODES 95

4.1.4 Example

We illustrate our definition on a simple example: checking whether a common type of
door is open or closed. Our target is a door, the information is the opening status and
the time context is the period during which the door remains installed and in good
shape. The point of view is the one of the door’s user, the level of abstraction is the
door as a system. We use as a state variable the angle made by the plane of the door
regarding the one of its frame. The state space is any value between 0 and 90 degrees,
assuming that the door can not be opened further than at a right angle. The state of
the door is evaluated by measuring the angle at a given time. If the angle is less than
5 degree, the door is considered closed. We do no consider the lock mechanism for the
definition of “closed”. We can abstract the state variable as one having for state space
only two elements, “open” and “closed”, as it is the only information we are interested
in. We can then represent the state variable in a state diagram, with two state values.
We see that a same type of state can be represented in several ways, and that is does
not necessarily keep the same information value, as we could place the door at an angle
over 5 degree just for an instant, that would be considered a point in time on a measure,
before closing it again.

4.2 Concept of Mode

4.2.1 State of the art

Again, we consider several definitions:

• According to the ISO/IEC/IEEE 24765 standard, a mode is a set of related features
or functional capabilities of a product.

• According to the SMC Systems Engineering Handbook [79], “The condition of a
system or subsystem in a certain state when specific capabilities (or functions) are
valid”.

• According to Wasson [76], a mode is “An abstract label applied to a user (UML
Actor) selectable option that enables a set of use case-based system capabilities”.

• According to common definitions in English and French dictionaries, a mode is a
“way of behaving” of a thing.

• According to the Arcadia method [80], a mode is “a behavior expected of the system
[...] in some chosen conditions”.

CHAPTER 4. CONCEPTS OF STATES AND MODES 96

Modes are linked to actions, functions or capabilities. As there are debates about
what is a state and a mode, we also analyze states definitions that relate to capabilities:

• According to the ISO/IEC/IEEE 24765 standard, a state can be “something that
determine the set of functions that are possible or can be performed”.

• According to the SMC Systems Engineering Handbook [79], a state is “the con-
dition of a system or subsystem when specific modes or capabilities (or functions)
are valid”.

• According to the Arcadia method [80], tooled by Capella, a state is “a behavior
undergone by the system [...] in some conditions imposed by the environment”.

• According to Jenney [81], “States define an exact operating condition of a sys-
tem, where modes define the set of capabilities or functions which are valid for the
current operating condition”.

4.2.2 Analysis

Considering those definitions and other sources, we have identified several attributes and
characteristics about modes:

• They characterize the behavior of a thing (e.g., the behavior of the system under
this mode).

• They express a behavior regarding a set of capabilities, functions or actions (e.g.,
moving forward or backward, performing maneuver, etc.).

• They are defined for a set of conditions (e.g., specific states of the system).

We use the following definition found in ISO/IEC/IEEE 24765 for the concept of
behavior: “the peculiar reaction of a thing under given circumstances”. There is a dis-
tinction between the behavior characterized and the behavior expressed. The former
is the whole behavior of the thing characterized, hence its reaction under any circum-
stances. The behavior expressed by a mode represents part or whole of the behavior of
the thing: specific reactions under the conditions for which a mode is defined. For exam-
ple, there are capabilities on a smartphone that are valid when the phone is connected
to a Wi-Fi, and that can be characterized by a “Wi-Fi mode”, but this mode does not
characterize capabilities such as calls, SMS, etc. which are part of the global behavior of
the phone. “Wi-Fi mode” could have sub-modes, such as “automatic updates”, meaning
we can characterize behaviors that are not always those of the phone, but those of its
main capabilities.

CHAPTER 4. CONCEPTS OF STATES AND MODES 97

Behavior under specific conditions is something that we find in UML states. State
elements in UML enable to call operations and are used to model a behavior. Regarding
the sub-states, we saw they could not be always be considered as state variables. But
according to the criteria listed above, they can be modes. A mode is not always defined
for the whole time context of the object it characterizes. Individual capabilities can be
characterized by more than one mode. They can have their own conditions or events
needed to execute them, which can be modeled as preconditions (guards) or with others
modes. For example, most capabilities in a train are conditioned by the train operability
modes, as what can be done depends on the energy supply and the level of activation.
But there are then functional modes conditioning their execution even when they are
technically possible, like opening doors or going forward in a train fully activated. Two
modes can exist under the same conditions and characterize the same function in different
ways. That may be why in the UML definition of state, which we associate to the notion
of mode, the conditions are said to be often implicit.

Being in a mode or not can be an information characterized by a state. We can have
a set of modes linked by transitions and defined over the whole system life-cycle. But a
mode is a notion different from the one of state. A state is evaluated at a point in time,
and its value(s) can possibly hold only for an instant. A mode is defined independently
of time, as its conditions can hold only for an instant but characterize behaviors that last
in time. As a mode is linked to conditions, or a state, it may be why states are sometime
defined as values holding for a period of time. We can conclude that while modes and
states can be linked, they correspond to two different notions. A state characterizes a
way of being of the system at a given time, a mode characterizes the way the system
behaves for a particular state value. Modes depend on states, but a state do not depend
on a mode to be defined.

A mode can be abstract. It could for example characterize capabilities according to
the way the system is used, meaning characterizing a performed behavior, which may not
cover all potential behaviors. There are capabilities one wishes to inhibit, authorize or
constrain but not as part of the system specifications. For a train, there are restrictions
when you drive in a station or in an urban area, representing an information that could
be included in a model of the behavior.

CHAPTER 4. CONCEPTS OF STATES AND MODES 98

4.2.3 Definition

Attribute Definition

Source The source of the behavior
Capabilities The capabilities characterized by the mode
Conditions The conditions for which the mode is defined
Characterization The way capabilities are characterized by the mode
Level of abstraction The level of abstraction linked to the capabilities characterized

Table 4.2: Attributes used to define a mode

We define a mode as a characterization of a set of capabilities of a thing under a
set of invariant conditions. In other words, a mode participates in the specification but
does not specify the behavior by itself. A behavior can be referred to without being fully
described. To characterize a mode, we need to know the source of the behavior (the thing
that behaves), the kind of characterization, the capabilities and the conditions. In order
to adapt this definition to system modeling, we have to consider another attribute: the
level of abstraction, which characterizes the capabilities and whether they are attributed
to the system, a sub-system or a component. The point of view is always internal, as we
characterize the system capabilities. The conditions and characterization could originate
from an external source, for example if we define modes of utilization, but the behavior
characterized is still the one of the system. According to our previous analysis, the
attributes necessary to define a mode are given in Table 4.2.

We then link this definition to concepts enabling to model it using different languages
and modeling objects:

• A capability is something realized by the thing characterized (e.g., actions, opera-
tions or functions).

• A characterization is a constraint put on a capability (e.g., enabling, conditioning,
inhibiting or calling).

• A set of conditions is defined by conditions on a set of states variables.

• A mode space is the set of all possible state configurations under which a mode is
activated.

• A mode is a characterization of a set of capabilities under a set of conditions.

CHAPTER 4. CONCEPTS OF STATES AND MODES 99

4.2.4 Example

We illustrate our definition using the door example from earlier: we qualify the behavior
of a door. We characterize the capability of a door to be opened. The characterization
of this capability is enabling it. The condition for which the mode is defined is that the
door is unlocked. The level of abstraction is the one of the SOI. At the condition that
the door is unlocked, we are in a mode where the capability “open the door” is enabled.
Whether the door is locked or not could be evaluated with a state, which would not
characterize the behavior.

4.3 Application

4.3.1 Definition of train states

Different types of states can be defined, each characterizing a kind of information re-
garding the system. For a train, we can consider:

• The operability : the readiness of the train.

• The energy supply : the source used to power the train.

• The environment : the place where the train is operated.

• ...

Each type of state can take the value of a corresponding set of state values. While
they may appear as mere variables, those types of states are not necessarily measured or
calculated, as they can express a “known” information, as it is the case for the operability.
What truly differentiates a type of state is that its state values change depending on the
target it qualifies and the adopted point of view.

Types of state express pieces of information that have been identified and separated
to characterize the conditions under which the system is used and where the different
use cases can be performed. As such, the information contained in a given type of state
can be abstract. Functions that are physically possible for a train, such as opening
doors when moving or traveling at fast speed in a train station must be constrained or
controlled, using abstract information to represent internal control.

CHAPTER 4. CONCEPTS OF STATES AND MODES 100

A good example of a type of state used to describe the train system is its operability.
It is a type of state that indicates the capability of the train to pursue a mission. It
mainly depends on the status of the train energy supply and the activation of internal
systems. It is used to specify scenarios and represent high-level conditions of a train
main functions.

Operability illustrates the fact that defining a type of state is valuable on its own.
Indeed, operability is defined before making a design, and most use cases can be per-
formed for several states of operability. It means that, on its own, operability is first
an abstract type of state with no practical ways of evaluating it. It is too broad to
characterize use cases but still provides a key information to the user regarding the train
utilization and evolution.

Figure 4.2: Original state diagram characterizing the train operability

We start from pre-existing train state diagram given in Figure 4.2 to highlight the
issues that can arise from an unclear concept and definition of state. This diagram is
part of a document describing an offer to a client, meaning BT is contractually bound
to respect its specifications. The guards on the transitions have been removed for more
clarity. We use simple graphical representations that are not linked to a specific tool or
language, as such a diagram is specified in documents and is originally not part of BT
SysMM.

CHAPTER 4. CONCEPTS OF STATES AND MODES 101

Operability

Target Train
Information Operability, energy supply, mission
Context The train daily life-cycle
Abstraction level Train or component level
View The point of view of the train

Table 4.3: Original definition of the type of state operability

We now apply our definition of state to this diagram, evaluating the attributes we
defined using the information in the original operability diagram. The result is shown
in Table 4.3.

Operability

Target The train system
Information The train operability
Context The train daily life-cycle
Abstraction level Train level
View Point of view of the train

Table 4.4: Definition of the type of state operability

Energy supply

Target The train system
Information The train current energy supply
Context The train daily life-cycle
Abstraction level Train level
View Point of view of the train

Table 4.5: Definition of the type of state Energy supply

The states defined in the Figure 4.3 refer to three different kinds of information, as
shown in Table 4.3 when trying to define a corresponding type of state. The operability
is clearly defined, but this is not always the case for the energy supply. Being in a
rescue mission is an unrelated piece of information. The information is not defined over
the whole context, meaning that the state space is incomplete. Mentioning batteries
means that the diagram characterizes information at component level, while the other
information characterizes the system level. This diagram does not define a unique type
of state but mixes different information. We hence define two different types of state in
Table 4.4 and Table 4.5, each represented in Figure 4.3 and Figure 4.4. One type of state
represents the train operability and the other the train energy supply. Dismissing the
information regarding the train mission, which was not in the original scope, both states
now express a complete, unique information and relate to the same level of abstraction
of the SOI. The other attributes do not change.

CHAPTER 4. CONCEPTS OF STATES AND MODES 102

Figure 4.3: Operability state of the train

Figure 4.4: Energy supply state of the train

CHAPTER 4. CONCEPTS OF STATES AND MODES 103

The dotted lines in 4.4 characterize possible transitions that were not considered
in the original diagram and became evident after a separate analysis. Note that the
operability is only partially determined by the energy supply. The next step would be
to define the constraints between the operability and the energy supply, an activity that
is covered in chapter 6.

4.3.2 Definition of train modes

The terms of operability state and operability modes are both used in BT, which is an
issue. We saw how to define a type of state characterizing the operability of the train. We
did not consider operability modes, as operability is an information captured by a type
of state. If we were to give it a definition, an operability mode would be a mode that for
a condition on the operability state, characterizes a group of use cases or functions. The
operability states conditioned, the capabilities characterized, the characterization and
even the source of the behavior could be different from one operability mode to another.
An operability mode is either activated or not, as the conditions on the operability states
are satisfied or not. There would be no natural transition between operability modes,
as opposed to operability states.

Operation Mode X

Source The train
Capabilities Power the train
Conditions The train is in the operability state “dead”
Characterization Enabling capabilities
Level of abstraction Train level

Table 4.6: Attributes defining the operability modes

We can still characterize the train behavior depending on the train readiness using
operability states. For example, we could define a mode that has for condition the state
“dead” and that enables the capability “power the train”. Checking the terms used in
BT and presented in the chapter 2, it would correspond more to an operation mode than
an operability mode. We name this example of a mode Operation Mode X and evaluate
its attributes in Table 4.6.

Whereas a type of state can be identified by the type of information it characterizes,
it is more complicated for a mode. A mode makes the link between the train capabilities
and the conditions the train is in. Having the train as a source for the behavior and as
the level of abstraction considered, both the conditions and the capabilities characterized
are needed to identify the mode. Supposing that the characterization of the behavior is
always enabling the capabilities considered, we can group those capabilities under the
same conditions, in which case the conditions can be used to identify the mode. This
is where a type of state can be defined to evaluate whether a mode is activated or not.

CHAPTER 4. CONCEPTS OF STATES AND MODES 104

Under these circumstances, we can see that state and mode are indeed closely related,
as in this specific case they could be identified using a same information. However, they
remain different concepts and objects. To avoid this kind of confusion, it is better to
identify a mode by the capabilities it characterizes, as we show in the next example.

Figure 4.5: Modes of a TCMS function

We consider another type of mode, illustrated in Figure 4.5. This is a SysML state
machine illustrating the behavior of a TCMS function, “Manage the TCMS HMI”, the
TCMS being a subsystem of the consist and our SOI here. “Manage the TCMS HMI”
is a mode, and is identified by abstracting the capabilities it enables into a higher level
capability grouping them. The black circle connected to “Manage TCMS HMI” represent
the first of a transition from a state of the system where the conditions for the activation
of the mode “Manage the TCMS HMI” have yet to be fulfilled.

CHAPTER 4. CONCEPTS OF STATES AND MODES 105

Manage the TCMS HMI

Source A function managing the system interface

Capabilities
Managing the cab action status
Managing the demisting status

Managing the demisting requests
Conditions Unknown/not specified
Characterization Enabling the capabilities
Level of abstraction Subsystem

Table 4.7: Attributes of the mode “Manage the TCMS HMI”

We consider the SysML state elements as modes. We define the attributes of the
mode “Manage the TCMS HMI” in Table 4.7.

The conditions are not visible in this diagram, they are found in the documentation.
The missing information could be represented by expressing conditions on the system’s
and sub-system’s states using variables. The mode characterizes the function’s behavior,
not the SOI’s. Functions are abstract notions, and we prefer to not define states for
them aside from modes modeling their behavior, as they are too numerous and can
exist in specific time contexts. We also see that each capability is characterized by a
different behavior with their own modes. There are information about components that
could be abstracted. For a same level of abstraction regarding the SOI, we can have a
hierarchy of capabilities with their own behaviors, modes and time contexts. It should
also be possible to model such a behavior for the consist itself, without referring to lower
levels of abstraction regarding the system. We see that beyond describing the expected
behavior of the system, modes can be used to describe how it will be implemented.

An improper definition of states and modes can have serious consequences when
designing a system. There was a case where BT, as per contract, had to provide a train
with troubleshooting functions executable when alimented by batteries at low voltage
(under 63V). However, according to the supplier, the battery was considered at low level
when under 50 volts, for which no functions could be executed. Confusing the state of
energy supply and the state of the energy source supplying it, since both shared a same
state value, BT implied it provided troubleshooting functions available for any voltage
under 63V, even under 50V where it was no longer possible for physical reasons. Both
states and modes should have been identified and specified with a specific meaning,
target, etc. at a high level of abstraction, before even choosing batteries as a solution.

CHAPTER 4. CONCEPTS OF STATES AND MODES 106

4.3.3 Verification of the behavior

Now that we have our concepts and a way to express them in models, we need to perform
some integration: we need to correlate the different pieces of information expressed in the
different types of states, and define an architecture for the mode so that they represent
a single, consistent behavior. We need to define constraints around state and mode, as
part of the specifications. Those constraints will define the possible state configurations,
as well as the transitions between them, and the conformity to those constraints will be
expressed as properties as part of the V&V requirements. We also want to ensure the
traceability of the information captured to perform validation of the behavior all along
the development process, based on a same high-level behavior that has been specified,
modeled and validated. All of this is covered in chapter 6.

Before performing integration and V&V activities, there is a need to acquire the
right information, from the right models. States, modes and all modeling element used
to specify the system and its behavior must be properly defined and traced. This can be
a challenge in an industrial context. The next chapter hence presents a way to enforce
modeling rules to properly define and keep track of the information in models created
following BT SysMM.

Chapter 5

Model verification method

The previous chapter presented some concepts needed to characterize a system and
its behavior. Those concepts are meant to be linked to modeling elements, following
a specific semantic. As explained in chapter 2, having an ontology and a modeling
method is not enough to ensure that engineers create the same models the same way
with the same meaning. There is a need to enforce a semantic regarding the expression
of concepts in modeling elements while following a modeling method. In this chapter,
we present a solution to express and enforce modeling rules, with the added benefits of
ensuring traceability.

This chapter focuses on the verification and validation (V&V) of system models,
built as part of the system development process at Bombardier Transportation (BT)
for producing a broad portfolio of railway products. The models to be checked are
expressed using SysML, following the BT SysMM method. The main objective is to
develop a generic V&V solution based on SysML without any tool dependent criteria so
that it is reusable across all BT divisions and projects.

5.1 Models V&V

From a technical point of view, the main aspect in verifying a model is ensuring that no
errors were made in the specification of the system design. Creating models and having
correct models are two different things, and can impact the rest of the development
process. Similarly to validation, the earlier an error is detected, the less the cost.

From an organizational point of view, within large organizations, ensuring that ev-
eryone creates models under the same guidelines and constraints is a challenging task. It
is crucial that the modeling team members work the same way and are able to exchange

107

CHAPTER 5. MODEL VERIFICATION METHOD 108

around their delivered models with others without any misunderstanding or consistency
issues. This gets more complex with teams spread across continents and/or companies.
Having one defined modeling method across an organization and applying it the same
way are two different things.

During the early phases of MBSE adoption at BT, the focus on models’ V&V was
triggered mainly by specific projects based on particular customers or countries needs.
As MBSE enabled the reutilization of models specification across projects, the goals
of V&V extended towards being more generic and project-independent. This however
introduced the discovery of hundreds of errors and inconsistencies by the BT V&V team.
It was not that the models were globally wrong, but rather that the project specific teams
had their own interpretation of the method or specific modeling practice, gained from
experience. What it did mean is that the models could neither be easily reused by other
teams, nor could they be adapted while reproducing the same modeling approach. This
is a main challenge for large organizations that are driven by project specific customers
in contrast with those able to generalize their products and offer a predefined product
portfolio (e.g., in automotive). Therefore, the need for reusing V&V of the delivered
models is crucial to ensure proper systems models reuse. Moreover, it is crucial to
implement the suitable adoption approach, similar to the D3 MBSE Adoption Toolbox
[82].

5.2 Background on BT SysMM

BT SysMM tasks include V&V activities to ensure the quality of the deliverables. Those
activities are performed through manual review by experts. However, through the de-
ployment of SysMM on several projects, the implementation of V&V solutions started to
get very challenging due to the many changes triggered from the various dimensions such
as the applications of modeling (e.g., functional description and variant management)
and the abstraction levels (e.g., train, consist and subsystems). Therefore, the need for
an automatic, generic and reusable V&V solution was addressed to improve the V&V
activities and hence optimize the deployment of MBSE. The targeted approach was built
on the following objectives:

• Enable formal, generic and reusable V&V methods to be used across different
projects and different departments.

• Ensure an early start of the V&V activities with regard to the system models
development and keep it running in parallel to the SysMM tasks.

• Support V&V automation as much as possible to reduce the time consumed on
V&V activities and avoid any potential errors due to manual actions.

CHAPTER 5. MODEL VERIFICATION METHOD 109

5.3 State of the art

As explained in [83, 71], SysML on its own is not the best suited to apply a development
method or build meaningful models in systems engineering. We have to ensure that
we manipulate system concepts that are represented by corresponding model elements,
along with proper semantic and relationships. A good example would be the lack of
elements representing a function, which lead to the creation of specific methods on how
to define a functional architecture based on SysML [7].

It is possible to adapt SysML to our needs through the use of profiles, constraints
and additional semantic. The Arcadia method [83] is an example of an adaptation of
SysML to system development using system concepts. Arcadia is not considered as a
Domain Specific Modeling Language (DSML) by its creators because of the broad scope
of its application and its links to modeling standards. However, Arcadia does not follow
the SysML standard fully, and has fixed concepts linked to the modeling elements.

BT developed a profile that aims to give semantics to SysML elements while following
a general modeling method that could be used also for other systems beside trains. From
this comes the need for the verification of the models according to the semantics defined
in the profile. The difference with Arcadia is that customized semantics and profile can
be adapted depending on specific needs and the method used, without relying on a fixed
solution and tool. We consider here an existing solution for SysML models V&V and
several examples of its application.

System V&V is different from model V&V, and so are the techniques used. Instead
of considering common V&V solutions such as tests or model checking, which would
require for the model to be executable, we need to check if its construction is consistent
and holds correct meaning compared to a real system. As shown in [84, 85], it is possible
to have an implementation and verification of a SysML profile through the use of the
Object Constraint Language (OCL) [86].

OCL enables to define constraints on a model, which we refer to as rules. We speak
of verification rules and validation rules depending on their usage, but they are often
called validation rules in practice, as shown in the several tools using this mechanism
[87, 88, 89].

While OCL is widely used for this purpose, V&V rules can be developed in other
languages supported by the modeling or analysis tools. For this reason, we consider the
model V&V solution studied here to be the rules’ mechanism and the method around
them, whether the rules themselves are coded in OCL or some other language. The rules
developed for BT sometimes required to use Javascript or Ruby, as there were limitations
on how the elements of the meta-model of the modeling tool could be referred to or
constrained using OCL.

CHAPTER 5. MODEL VERIFICATION METHOD 110

Regarding the use of OCL to check or analyze a model, we can find several examples
of its adaptation to industrial context, offering technical solutions [90]. Some, such as
[91], includes OCL as a V&V solution in a process for models and instances design.

We consider the use of verification rules in a broader context, which is a system
development process including many kinds of models and taking into account the work
of several modeling teams across different projects. We use OCL rules to enforce a
semantic and detect errors in the model representing the system. Validation using OCL
rules is technically possible but it is currently not practical to develop those in a project
context, as it will be explained further in this document.

We use the rules mechanisms already existing in Magicdraw. A rule in magicdraw
is a constraint put on a given type of modeling element. It is checked on all instances
of the modeling element, and return an error and a reference for every occurence where
the constraint is violated. A rule is defined by the following attributes:

Constrained element: the modeling element, be it an object or a relationship, affected
by the rule.

Severity: the degree of concern regarding the constraint violation detected by the rules
(information, warning, error, critical error).

Error message: a textual description of the constraint checked by the rule.

Language: the language in which the script implementing the constraint is written in,
such as OCL2.0.

Specification: the script implementing the rule.

An example of a verification rule’s attributes in Magicdraw is given in 5.1. The
specification is written in OCL 2.0. The rule illustrated here checks that the attribute
”documentation”, which is a free text field, has been completed.

5.4 BT SysMM V&V

5.4.1 Method Stakeholders

The Figure 5.2 shows the context of SysMM V&V and the roles of its stakeholders.
The V&V activities are part of SysMM and embedded within each task of SysMM (e.g.,
Operational Analysis). They start in parallel and continue until the deliverables of the
SysMM task are verified and validated.

CHAPTER 5. MODEL VERIFICATION METHOD 111

Figure 5.1: Example of a verification rule in Magicdraw

Operational
Analysis

Functional
Analysis

Technical
Analysis

SysML Model

Verification Rules

: V&V Task

Validation
RulesModel

Developer

V&V
Developer

Domain
Expert

develops & verifies

BT SysMM with V&V

delivers

validates

supports
Method

Developer

delivers

uses

developed according todevelops

Figure 5.2: BT SysMM Verification and Validation Stakeholders Context

Moreover, there is a common V&V part across all the tasks of SysMM, related to
the generic and reusable models (such as the model library elements and glossary).

The context in Figure 5.2 indicates that the SysML model is the system of interest
under which the V&V takes place. The verification rules are also represented with a
model icon because they are implemented using OCL directly in the systems modeling
tool. Both the SysML model and the verification rules are included in a project model,
whereas the validation rules are documented in a formal textual format and shared
through a common guideline. Validation rules are currently broad and/or abstract con-

CHAPTER 5. MODEL VERIFICATION METHOD 112

siderations that cannot be evaluated by a script. While verification checks the model
and its semantic, validation targets the information expressed in the model regarding
the system requirements and expectations. We could define lists of validation rules that
check specific considerations expressed by domain experts, but quite often, the lack of
resources (time and skills) to develop and use such rules during the project is an issue.

CHAPTER 5. MODEL VERIFICATION METHOD 113

Stakeholder Role Description

Method
Developer

Is responsible for defining and developing the system mod-
eling method, its guidelines, training courses and tools’
customization specifications. This also includes the V&V
method parts and their relationship to other method parts.
The method developer possesses a unique governance role
in monitoring the deployment of the method on projects to
ensure the reusability of delivered system models.

Model
Developer

Is a member of the modeling team that is responsible to
develop the system models and verify them according to
a defined set of verification rules based on project needs.
The verification process is done automatically by the system
modeling tool and can be set to be active all the time or
triggered by the model developers.

V&V
Developer

Is responsible to develop and maintain the verification and
validation rules based on the input from the method de-
veloper, domain experts and project needs. Additionally,
this includes analyzing the V&V requirements, implement-
ing, testing and delivering them. It is the role of the V&V
developer to ensure the reusability of V&V rules across sev-
eral projects.

Domain
Expert

Is a member of the architects team who possess the authority
and knowledge in a particular railway technical domain, e.g.,
brake, propulsion or train control. The domain expert plays
a crucial role in validating the system models’ content based
on his own experience of the real-world system represented
by system models.

Table 5.1: The BT SysMM V&V Stakeholders Roles Description

The SysML model represents an abstraction of the real world system (e.g., train,
subsystems or components). Furthermore, the SysML model is being developed based
on the defined method and guidelines bundled here with the BT SysMM. The SysMM
V&V identifies four stakeholder roles with their own responsibilities and competencies.
Table 5.1 lists these four roles and describes them in detail.

It is crucial for these roles to be well-defined in the company, as not everyone should
define, develop, apply or change rules implementing the modeling method or defining
the conditions that models have to satisfy to be validated. While we can define any
arbitrary number of users, the definition of the modeling method and the management
of the rules and their packages should be allocated to specific entities. This allows to
centralize the skills, development efforts, and rules specifications, while avoiding conflicts
and incoherence among the modeling teams.

CHAPTER 5. MODEL VERIFICATION METHOD 114

5.4.2 V&V Method Overview

Figure 5.3: Verification Method

CHAPTER 5. MODEL VERIFICATION METHOD 115

As we have defined the different roles in the previous section, we now present the
method and work process they follow in order to specify, develop, share and apply
verification rules. This is illustrated in Figure 5.3. As validation rules are not yet
managed by the rules’ mechanism, they are not part of the method presented.

Rules are defined and used for a specific purpose and context. A key aspect of our
implemented solution is the allocation of verification rules to modules or packages. This
way, rules in a same package can share a same application context and correspond to
a same step in the modeling method with the related semantics. As the packages are
managed by the method developers, they can be communicated to any team, enabling
uniformity and reuse. Rules specific to a project will be contained in their own pack-
age. When working on a collaborative tool, the packages can be automatically updated.
Choosing the right verification packages enables us to define, apply and adapt our se-
mantics. Packages can be versioned to be able to work on older projects. We can define
packages providing the semantics of other modeling methods when working with or for
other providers. Packages are to be built so as to separate conflicting rules.

Verification rules are not just a technical solution, they are specifications on how the
modelers should work and what they should deliver. In order to specify, communicate,
understand and use the rules, a proper documentation is required. Supposing you work
with teams with different tools or an external provider, you can communicate the rules
that have to be followed during modeling, even if they are not implemented or compatible
with the tools. The documentation should at least specify for each rule: an ID, a
target, a method, its current place in the life-cycle and the specification/constraint/error
addressed by the rule.

CHAPTER 5. MODEL VERIFICATION METHOD 116

5.4.3 Benefits

Aside from the semantics, the rules enforce the (modeling) methods and support the
engineers’ work processes. Checking the rules on each step results in a report on the
quality and level of advancement in the work done, enabling to proceed to the next
development step after having checked for errors. Note that by verifying the relationships
between concepts/elements, we ensure a certain degree of traceability. Supposing that we
have modeled the requirements as artifacts, we can achieve part of the system validation
just by ensuring that they are linked to other elements such as functions or scenarios.
This is also true across abstraction levels, when switching the SOI from the system to a
sub-system.

An advantage of the approach based on verification rules is that it is progressive,
empiric, iterative and adaptive. We can specify, update and change the semantics and
modeling rules over time. Note that most verification rules should be decided at the
start of a project. While we can always develop rules during a project in answer to an
immediate need, we should not remove or change any of them once the modeling activities
have started. A key point in BT is that new modeling methods are being developed and
spread in the different company sites across the world. With rules, they are supported
by a common and automatic solution. Rules are transmitted as packages, and executed
automatically, generating a report in natural language and links to elements conflicting
with the rules so that engineers find and correct errors. Modeling teams can check
the models and learn at the same time the method implemented by the rules. They
also provide a feedback and request new rules. Rules support the training of modeling
teams as the rules enforce the way the method has to be applied. In return, the method
developers learn from the experience of modeling teams. This creates a dynamics that
optimizes the work performed and the results obtained across projects, each supplying
new rules and improvements. This would not be possible if we were to impose a new
tool with a fixed semantics.

CHAPTER 5. MODEL VERIFICATION METHOD 117

5.5 Use case example

Figure 5.4: BT SysMM Diagrams Example on Which V&V is Applied [5]

Traditionally, the work split during the model development between teams is based
on the work breakdown structure which defines a list of scopes covering all functionalities
of the SOI (e.g., train or subsystem). The functional scope travel direction, taken from
[5], is used in this section to illustrate the application of SysMM V&V on an example
from the railway domain. A scope here is referred to as a part of the work breakdown
structure of the whole function set.

Figure 5.4 shows some of the SysML diagrams delivered using the SysMM operational
and functional analysis tasks.

The operational analysis part is demonstrated through the use case and activity
diagrams. The use case diagram defines the use case “Set Travel Direction Of Train”, its
actor (i.e., the driver) and the respective trigger signal “Train Travel Direction Request”.
The activity diagram describes the internal behavior of this use case in a generic manner
independent of any specific functional or technical solution in order to reuse it in several
projects.

CHAPTER 5. MODEL VERIFICATION METHOD 118

The functional analysis part is shown with the internal block diagram where previ-
ously modeled activities are structured in a functional architecture that fits a particular
train platform or project. The functional architecture defines all functions needed to
cover the travel direction scope with functional blocks and their interfaces. These func-
tion blocks are linked back to the activities of the operational analysis and allocated
later on to the technical blocks’ solution to ensure traceability.

The scope discussed here is one out of other hundreds of scopes normally modeled
to describe the safety related functions of a train. Usually, a set of scopes is assigned to
particular domain experts and model development team. The model developers, usually
system engineers, take the responsibility to develop the SysML models based on the
input requirements of their own scope.

Sample Verification Rules:

1. A use case must own at least one activity

2. A use case name must follow the naming convention guidelines
(e.g., starting with a verb and all words are capitalized)

3. A triggered use case must have at least one actor and one trigger
signal

4. A signal name must follow the naming convention guidelines

5. Model elements, e.g., use cases, must be unique across the whole
model

6. Each function is linked to at least one activity

Sample Validation Rules:

1. Are the use cases’ actors complete according to the requirements?

2. Are all actors and signals considered in the correct way with re-
spect to the requirements linked to the use case?

3. Does the use case activity describe the exact scenario of real op-
eration as described in the requirements?

4. Is the functional architecture solution (i.e., functional split and
allocation) satisfying the relevant requirements?

Table 5.2: BT SysMM Rules Examples

CHAPTER 5. MODEL VERIFICATION METHOD 119

During the modeling activities, the model developers verify their models automat-
ically based on the verification rules implemented in the tool. These rules are aligned
with the deployed method and implemented using OCL in the systems modeling tool.
Table 5.2 lists a sample of textual representation of the verification rules for model ele-
ments such as use cases or signals. The verification rules check automatically if model
elements are modeled according to the defined method. If not, the model developer
is getting a notice about the result of the check i.e., an error, warning or information.
One can see from the list that the verification rules check also model consistency and
completion.

After the model is verified, it is shared with the responsible domain expert for the
sake of validation. The second part of Table 5.2 lists a sample of the validation rules
relevant to the presented example. A more detailed sample of the rules deployed in
BT is given in the annexes. These rules are documented in a formalized textual format
and offered to support the domain expert during his model validation activities. The
validation rules are always traced back to the system requirements. It is the role of
the domain expert to apply his experience in order to check these traceability links and
confirm that the model specification is valid with respect to the provided requirements.

Chapter 6

Behavior verification method and
model

In the previous chapters, we developed concepts to specify and integrate a system and
its behavior, as a well as a mean to check the expression and utilization of those concepts
through semantics associated to a SysML profile. We shall now consider how to perform
verification and validation of a system behavior.

In this chapter, we present early validation results obtained thanks to the definition
of global states and modes describing a train and its behavior at operational level. This
work is conducted in the scope of a project in BT and is applied to a case study. We
aim at establishing a continuous validation method along a train system development
process. The target of the validation is the system behavior, which we define as the way
the system reacts under given circumstances.

6.1 Presentation

6.1.1 Context

The behavior of a train system is defined through hundreds of use cases, classified among
hundreds of scopes. A scope is part of a functional breakdown structure that classifies
the use cases and the functions according to their domain (e.g. energy, traction, etc.).
The scopes are divided among different requirements and functional engineers. In the
chosen metro MOVIA Maxx case study, the specification at operational level includes
277 use cases contained in 60 root scopes of a classification system, divided among 12
functional and requirements engineers.

120

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 121

Each use case is described by a sequence diagram. Redundancy in specification is
avoided by having each engineer work on dedicated scopes. The drawback is that they
define behaviors separately, using a non-formalized nor centralized knowledge regarding
the system. Consequently, the specifications are unrelated, without any integration.
Rather than just specifying what the system-to-be does, we have to specify “what”
system we want to obtain [18], meaning an abstract model of the system induced by the
specifications. Such a model implements an integrated behavior by conditioning the use
cases and track their effect on the evolution of the system state, without specifying how
those use cases are realized inside the system.

Regarding the V&V activities, there are limitations in BT. Executable models such
as grafcet [92] have been used where parts were missing in the co-simulation, but they
correspond to designs provided by subsystems developers or external providers. There is
currently no solution in BT nor models to check the system before any implementation.

It is currently possible to check that the system does what it is expected to do through
tests, later in the process, using co-simulations or bench tests. However, there are no
practical solutions for capturing unknown or unwanted behavior. While it is possible
to generate random inputs in a co-simulation, all cases disproving a property have to
be analyzed by an engineer to assess its relevance. BT stopped using such a solution,
as experience showed that checking a property could result in hundreds or thousands of
cases to analyze, most of them irrelevant as they suppose a use of the train system that
cannot happen in reality. There is a need to constrain either the system behavior or its
inputs.

6.1.2 Issues

Each functional engineer has knowledge on a specific scope of the train, and uses informal
information from textual requirements and her own experience to make specifications.
We saw that there were no integration specified through the models. Instead, the review
of the whole system is done informally by a skilled individual. A lack of a formal
description of the system at specification level prevents its automatic verification [18].
There is a need to express and check a common information regarding the whole system,
which we partially covered in the previous chapter.

The solution should automatically verify information consistency, so that engineers
do no depend on the validation team for their specifications. On the other hand, the
validation team should receive integrated, formalized and verified information to build
an executable model, rather than interpreting it on their own.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 122

There are potential unknown and unwanted aspects of the system due to the phe-
nomenon of emergence. Integrating the system implies specifying the integration to
avoid emergence. Specifying the integration is the role of the functional engineers, not
of the validation team, which is currently the one doing the integration when asked for
a model of the system.

The goal of the proposed approach is not to give an optimized solution to the V&V
of the specification at a given level of development, or even globally, but to provide a
way to continuously conduct these activities along the development process and with
traceability of both V&V requirements, results and models, based on an existing mod-
eling method. Accessibility, simplicity and quickness is preferred over exhaustivity and
formalism, taking into account the industry needs and capabilities. A given solution
cannot be immediately implemented across the entire development process. It has to
be gradual, following the evolution of both the modeling method and the development
process.

6.1.3 Related works

State machines have long been used to define and check system behaviors in discrete
systems [78, 93, 75].

The solution proposed aims to check a high-level specification of the system behavior.
The chosen approach to build a model is similar to state analysis [14], in the sense that
“states” of the system are modeled separately and used to control the system behavior.
The difference being that in [14] the model is more detailed, specifying a control of
hardware. Ingham developed this approach in response to several issues, similar to
those encountered in BT:

• Subsystem-level functional decomposition fails to express the whole system behav-
ior.

• There is a gap between the requirements and their implementation.

• The system behavior is not explicitly specified.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 123

6.1.4 Method

In the solution, the system is modeled while separating its description from its behavior.
The description of the system relates here to its structure and properties, and more
generally what is known regarding the system at a point in time. The system description
is modeled using states, while the behavior is modeled using modes. We use the concepts
of states and modes defined in the chapter 4. The method developed is divided into three
parts:

• Modeling method.

• Verification method.

• Creation of the execution model.

6.1.5 Case study

The method has been experimented on a real project data, using high level specifications
of a MOVIA Maxx metro. The focus was put on the train main functions when operating
under normal conditions, excluding maintenance, emergencies, restricted and degraded
operations and secondary use cases (e.g., comfort features) to concentrate on the train
activation and driving operations. This resulted in the selection of 54 use cases divided
into 12 scopes. Following the presented method, data was captured or specified in order
to build an integrated model of the system and check its behavior.

6.2 Behavior description through states

6.2.1 States in the case study

Movement
Neutral
Section

Electrical
Supply

Moving Neutral Full internal supply
Standstill Not neutral Internal supply depleted

Line supply
No supply

Partial internal supply
Shore supply

Table 6.1: Example of types of state describing a train operational status

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 124

Fifteen types of states were established to describe the system operational condition
and situation for the selected use cases. A sample of them with their possible values is
shown in Table 6.1, with information regarding whether the train is moving, if it is on
a section with an electrical line (not neutral) and which source of energy is supplying
the train systems. The State space of each of the 15 types of states varies from 2 to 6
different values.

Train states characterize the train at its own level of granularity, from its own point
of view, in the context of its whole life-cycle. This information can be found in part in the
scenarios defined in the operability analysis, as they specify circumstances under which
use cases are performed. Other information are obtained through empirical experience
and requirements analysis. This information, independently of the behavior, can be
constrained by physical laws, properties to be respected, inter-dependencies, etc.

6.2.2 State constraints

Without a design and working at system level, there may be an issue in measuring or
evaluating some of the states. What can be done is defining possible state configurations.
To do so, the different types of states can be correlated by constraints and properties
that condition the values (states) they can or should take in regard of each other. Those
constraints are defined in relation to the system, and not to its functions. Consequently,
establishing a correlation between them through constraints results in an integrated
description of the system that will be navigated through its behavior.

The system behavior depends in parts on its circumstances, meaning its situation in
relation to a context. They can be described by its states. The evaluation of all types
of state is a configuration describing the train circumstances.

In order to check the system behavior, it is important to define as many relevant
constraints as possible on the state values forming configurations to reduce emergence.
The more the system is constrained, the less unknown behaviors there will be, and the
fewer cases there will be to consider. While over-constraining the system is a risk, it is
not an issue in our setting: since checking the expected behavior is possible, any issue
due to over-constraining can be detected early enough. The problem can then be solved,
or in the worst case the specifications or the constraints were initially wrong or cannot
be fulfilled or checked at this point. On the other hand, a lack of constraints will result
in more unknown cases and will present the risk to perform analysis on irrelevant cases
while overlooking errors in others.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 125

Types of states can be used to check properties of the system. Definition of such
properties can lead to the creation of more types of states or constraints. For example,
a train “visibility” is ensured when the train has its lights systems activated under the
right circumstances. It can be defined as a constraint on the other types of states to
ensure that the train would be evaluated as “visible” when the circumstances ask for it.
Such constraints come from requirements and knowledge regarding the expected system.
They can constitute formal validation requirements when expressed using states.

We define two types of constraints: simple constraints and complex constraints. Sim-
ple constraints are defined between pairs of states values and can be captured and
specified by engineers. All possible simple constraints are considered, leading to new
specifications and a first integration of the system states. Complex constraints repre-
sent known or desired constraints between three or more states values and cannot be
exhaustively captured.

Let us denote T = {t1, ..., tn} as the set of the types of states, with n the number of
types of states defined. Each type of state corresponds to a set of possible state values:
∀i ∈ {1, ..., n}, ∃k | ti = {si1, ..., sik}. For every state value s, we also denote by s the
logical proposition: “the system is in state s”.

Two incompatibles states values x, y of two different types of states ti, tj are repre-
sented by the simple constraint ¬(x ∧ y). For all types of states, we can define simple
constraints as a set of clauses simpleConsts such as:

simpleConsts ⊆ {x ∨ y|∀i, j ∈ {1, ..., n}, i 6= j,∀x, y ∈ ti × tj} (6.1)

The complex constraints are defined by forbidding combinations of state values taken
from subsets of three or more types of states. Considering a group of types of states
t1, ..., tk with k >= 3, a complex constraint compConst can be defined as all combination
of state values among the subsets t′1, ..., t

′
k such that t′i ⊆ ti

compConst = ∧x1,...,xk∈t′1,...,t′k(x1 ∨ ... ∨ xk) (6.2)

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 126

6.2.3 State constraints in the case study

Fu
ll

in
te

rn
al

su
pp

ly

In
te

rn
al

su
pp

ly
de

pl
et

ed

Lin
e
su

pp
ly

N
o

su
pp

ly

Par
tia

l in
te

rn
al

su
pp

ly

Sh
or

e
su

pp
ly

neutral 1 1 0 1 1 1
not neutral 1 1 1 0 0 0

Moving 1 0 1 0 0 0
Standstill 1 1 1 1 1 1

Table 6.2: Simple constraints between types of states values

Listing the values of the different types of states, a square matrix can be created
where engineers can specify simple constraints between states values. Compatible pairs
of states values of two different types of states are marked by a 1 in the matrix, and by
a 0 otherwise. An example from the case study is given in Table 6.2, using values from
the types of states presented in Table 6.1. Only part of the square matrix is presented.

Fu
ll

in
te

rn
al

su
pp

ly

In
te

rn
al

su
pp

ly
de

pl
et

ed

Lin
e
su

pp
ly

N
o

su
pp

ly

Par
tia

l in
te

rn
al

su
pp

ly

Sh
or

e
su

pp
ly

D
ep

ot

In
se

rt
io
n

lin
e

M
ai
n

lin
e

St
at

io
n

N
eu

tr
al

se
ct

io
n

N
ot

a
ne

ut
ra

l se
ct

io
n

C1 0 1 1 1 0 0 0 1 1 1 1 0

Table 6.3: Example of a complex constraint

Complex constraints are defined as the rows of another matrix. The columns of this
matrix correspond to the states values of each type of state. Each row specifies the
subsets of state values involved in the constraint, represented by the indicator function
(i.e, a 1 means the state is included in the subset). This list has not the ambition of
being exhaustive, only expressing known properties from requirements and experience.
Contrary to simple constraints, it is not practical, or even possible, to ask for engineers
to think of all possible complex constraints. It also presents the risk to repeat complex
constraints already induced by simple ones. Besides, specifying the simple constraints
and correcting them often leads to the definition of new complex ones.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 127

Correcting a simple constraint means deleting it, as it was too strict and blocked the
realization of use cases, and replacing it by a complex constraint that is more specific
and carries the actual intent of the initial simple constraint. They often would not have
been specified or thought of by other ways. An example of complex constraint C1 is
given in Table 6.3.

6.2.4 Use case pre-conditions

States capture the circumstances in which a use case is possible. The preconditions
should capture every possible configuration in which a use case is possible, the limitations
being expressed through the constraints. A precondition has a subset of authorized state
values for each type of state. Considering the subsets t′1, ..., t

′
n of the types of states T

for a given precondition precond, we have:

precond = ∧i∈1,..,n(∨s∈t′is) (6.3)

Use cases preconditions are defined in a matrix indicating which values of each type
of states are compatible with their realizations. Compatible values are marked with
a one, incompatible ones with a zero. Those preconditions indicate which values can
and should be found in a configuration satisfying the use case preconditions, but do not
imply that all combinations of compatible values are possible, as there are constraints
to consider. Considering only preconditions of this form is justified by the fact that
engineers can focus on the use cases preconditions one state at a time.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 128

6.2.5 Use case pre-conditions in the case study

Fu
ll

in
te

rn
al

su
pp

ly

Par
tia

l in
te

rn
al

su
pp

ly

N
eu

tr
al

N
ot

ne
ut

ra
l

M
ov

in
g

St
an

ds
til

l

Wake up
train

1 1 1 1 0 1

Table 6.4: Example of a use case precondition

An example is given in Table 6.4 (only authorized values have been displayed for
the energy supply). Initially, waking up the train following a scenario to put it into
service was not possible as a constraint indicated that a train could not be still on a
neutral section. A neutral section is a section where there is no electrical supply from
the line, which is the case where the train is parked. The reason for this error was that
engineers made the specification while thinking of the train as performing a mission on
the main line. A neutral section can be found on the main line, in which case a train
should indeed not stop, but a train in a depot is also technically on a neutral section,
but still needs to move on its own. This led to the definition of types of states expressing
that the train was in a mission or not, and what its environment is, as well as expressing
complex constraints to enforce what was intended in the original specification. The initial
specifications on their own were either incomplete or not-binding, letting developers of
subsystems interpret the information and complete it. Such a completion is not their
responsibility and the interpretation can vary between the different teams and providers,
creating inconsistencies.

6.3 Verification method

In order to develop an integrated model to verify and validate the system’s expected
behavior, it is necessary to first have proper inputs. To that end, a solution has been
developed for engineers to check some predefined properties of their specifications. The
solution is automatic and works like a black box: it is a script coded in R language
that takes directly the matrices defined previously as inputs, without a need for other
modeling activities. The technical details are presented first, the results and errors
detected being discussed after.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 129

6.3.1 State constraints verification

Two basic sanity checks are performed:

1. There is at least one compatible value between two state types.

2. Each state value appears in at least one possible state configuration.

Performing the first sanity check implies checking that the simple constraint matrix
is correctly filled.

Calculating possible configuration is done by a script using applications of the graph
theory [94]. The solution is intended to correspond to the industrial practice and needs,
and as such is not optimal. A more elaborate solution is currently not needed considering
that the calculation only take seconds.

The script performs the following actions, logging errors at each check step:

• Check that the matrix is correctly filled.

• Calculate all possible configurations according to simple constraints.

• Filter possible configurations using complex constraints.

• Check the presence of each state value in at least one of configuration of the filtered
list.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 130

6.3.2 Use case preconditions verification

For every use case we check that:

• Its precondition admits at least one possible configuration regarding the state
constraints

• Each authorized state value appears in at least one possible state configuration.

The script performs the following actions, logging errors at each check step and for
each use case:

• Calculate possible configurations.

• Filter the configurations with complex constraints. Check again for the existence
of a solution.

• Check the presence of each authorized state value in a least one of configuration
of the filtered list.

Simple constraints and complex constraints are applied and checked separately to
facilitate their analysis and correction.

6.3.3 Results

The results can easily be formatted and processed, in our case an Excel file. The case
study showed that:

• Out of 15 types of states, 2 pairs initially lacked authorized values between them.

• Out of 45 state values, 6 were not initially included in any possible configurations.

• 5 more complex constraints were defined after correcting the simple constraints.

• Out of 54 use cases, 7 initially lacked at least one authorized values for some the
types of states.

• 13 use cases did not initially admit a single configuration as a solution.

• 51 use cases had unused values, for a total of 148 cases.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 131

The lack of authorized values between types of states or in preconditions were simple
omissions. State values not included in any possible configurations were due to the
following errors:

• State were ill-interpreted by the engineers.

• Engineers adopted a point of view that was too narrow, overlooking specific cases
were some states values were compatible.

Nearly all use cases had unused state values, meaning state values authorized in the
preconditions but not present in any of the related possible configurations. In order of
increasing severity, it could mean that:

• A given state was deemed possible in the preconditions but was not.

• The use case should have admitted a configuration with this state but its precon-
ditions were too narrow.

• There was an issue in the way the constraints were defined, blocking possible
configurations.

The states are used for the preconditions of all use cases, and their constraints are
used in the calculations of all possible state configurations. An error in their definition
is where it has the most severe impact.

The method proved that when integrating specified information on current validated
steps of a project, there were in fact many errors and misunderstandings that would
have to be corrected later on. Those errors were detected here at an earlier stage in the
process. In addition, this analysis provides new or proper specifications as opposed to
partial or informal ones.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 132

6.4 Execution model

According to our approach, the fundamental unit for organizing the system description
is the state, and the fundamental unit for organizing the behavior is the mode. The be-
havior is modeled by hierarchical state machines, here SysML statecharts, where “state”
modeling elements correspond to our concept of mode. Each mode can be activated af-
ter checking that the system state configuration allows it and that the right sequence of
activities has been executed. A mode here characterizes use cases of the system during
which specific conditions on the system state are true.

6.4.1 Holonic structure for states

Types of states are modeled as finite state machines arranged in a structure of holons,
similar to what is presented in [70]. A holon is an element that is both a whole, some-
thing that can exist and function independently, and a part, meaning it can be connected
to other element as part of a structure. Here, each finite state machine is a holon.
Rather than representing the system behavior, the holonic structure is used to estab-
lished traceability between states, some being deduced from others. This allows a first
form of integration by providing an evolving description of the system using correlated
information.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 133

Figure 6.1: Traceability of information for the train types of states

The system description is modeled following a specific process. First, we create a
SysML block for each type of states. Each of these blocks are contained under a block
gathering the different types of states of the system element characterized. This is
illustrated in Figure 6.1.

Each type of state’s block corresponds to a SysML property that is traced to the
train states, the train element and its behavior. Those properties are updated in the
types of state’s blocks and used in the behavior (to evaluate modes) and the system (to
evaluate constraints and properties). A given property is then repeated in each system
block with its values binded to the instance in a type of states where it is evaluated.

Figure 6.2: State machine specifying the evolution of the type of state “Polarity”

We model each type of state as a non-hierarchical statechart inside each block. They
are used to specify the possible transitions from one statue value to another, and update
the property corresponding to the current value of the type of state. We create a signal
for every transition of state values. An example of such a statechart is given in Figure 6.2

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 134

Figure 6.3: Dependencies between train types of states

The value of each type of state evolves depending on signal inputs. Those inputs can
come from the current system element environment, its own behavior, or be deduced from
the value of others types of states. As the Figure 6.3 shows, there can be dependencies
between the different types of states.

The values of types of state depending on others can be updated at the same time
the value of the types of state it depends on are evaluated. This result in the creation of
state machines inside “control” blocks that can replace individual types of state blocks
and state machines.

Internal inputs of a system element, from its behavior to its states, will generally
directly change the value of some types of states. External inputs probably carry infor-
mation from others system elements or the environment and may have to be interpreted
through others control state machines. For example, the train energy supply will depend
on the main source of electrical current activated, so it has to interpret states of sock-
ets, batteries, etc. which is information from a lower level of abstraction and does not
characterize the train. We define inputs ports for signals updating state values around
state blocks.

Although the issue was not encountered in the case study, we anticipate that the
amount or kind of information needed to deduce the value of a given type of states could
result in impractical or too complex control state machines. In such a case, we would
define constraints and equations to calculate the value of such types of states, similarly
to how we evaluate the activation status of modes, as presented next.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 135

6.4.2 Structure of the behavior

There is a need for both a specification and an executable model of the whole system
and its behavior. In order to integrate the specifications, it should be possible to specify
dynamic aspects of the use cases. It requires knowing which use case can be realized
in a given situation and how their possible realization evolves. Conditions enabling the
realization of a use case correspond to our definition of a mode. The preconditions
defined earlier enable to know when a use case can be performed, and considered as a
basis for defining modes. We will now define a structure of modes to analyze, integrate
and model the behavior. We define several types of modes:

• Use case mode: conditions the realization of a given use case

• Scope mode: a mode defined by a precondition composed of subsets that are the
union of authorized values in all preconditions of all use cases modes under the
corresponding scope.

• Abstract mode: conditions the activation of one or several scope modes.

The way the scope modes and abstract modes are defined is potentially larger than
the disjunction of use case preconditions and scope mode conditions they refer to. The
intent is to cover a broader context and follow the evolution of use case transition. This
is also a way of ensuring that we have implication relationships between the different
modes, something we need to build a structure around them. If every mode is implied by
another expect for one, which is the root of the resulting implication tree, then we have
a single structure of mode that can be explored by evaluating conditions that are more
and more specific. Each condition is only evaluated once when evaluating the current
active modes. If a mode is inactive, so are all of those that imply it, avoiding evaluating
their conditions.

Use case modes directly condition the execution of use cases. Other types of modes
only condition them indirectly by conditioning the use case modes or the modes con-
taining those. A mode is defined by the use cases it characterizes (directly or not) and
the conditions in which it is activated. As the relationship between modes and use cases
is established, the main characteristic needed for the definition of new modes is the
conditions for which they are activated.

The conditions for a mode can be considered as a group of subsets of each type
of state’s values. As long as all state values of a state configuration are part of these
subsets, the mode is active. Given T = {t1, ..., tn} the set of all types of states, a mode
has the same structure as a UC precondition (see section 2.5) and is defined by a set of
subsets t′i ⊆ ti.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 136

The behavior can be modeled using statecharts. As the use cases are managed in
scopes allocated to different engineers and that they are too numerous to be put in
one statechart, all use cases modes should be put under global modes corresponding to
their scope, where they are to be modeled in a corresponding statechart. Considering
{t′1, ..., t′n} the conditions of a scope mode, we define the conditions of the k use cases
under this scope as ∀j ∈ {1, ..., k}, {t′j1, ..., t′jn}. We have:

∀i ∈ {1, ..., n}, t′i = ∪kj=1t
′
ji (6.4)

In order to integrate the statecharts defined in each scope, there needs to be a way to
evaluate whether the different scopes modes are activated or not. We propose to create
a structure of implications enabling to determine activated modes by evaluating their
conditions.

Satisfying the conditions of a use case mode means the conditions of its scope mode
are satisfied: activating a use case mode implies activating its scope mode. In the
same way, some scope mode could imply others, which is the basis for our implication
structure. Some scope modes could also have the same conditions, in which case we create
one statechart in each scope to specify the behavior but only define one corresponding
scope mode.

All scopes modes may not be linked by implication relationships, in which case
we define abstract modes. Abstract modes are obtained by the union of two modes
preconditions. We only define abstract modes for pairs of scope modes that do not
imply others.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 137

6.4.3 Structure of modes in the case study

Figure 6.4: Implication structure of scope modes and abstract modes

The structure of modes is generated thanks to a script. The result of its application
on the case study is shown in Figure 6.4, using the modes of 6 scopes for visibility.
As the modes imply each other, a path of implication correspond to preconditions that
are more and more specific. Keeping only the longest paths, obtained by transitive
reduction (which as been applied in the example), correspond to progressive definitions
of increasing details in the preconditions that are each evaluated once.

We obtain a hierarchy of constraints, each evaluated only once and more specific
than the previous ones. The conditions of a mode activated are reused to check the
evaluation of others modes conditions implicating it.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 138

6.5 Synthesis

6.5.1 Method

The system is modeled while considering separately its states and its behavior. The
same approach is then applied on its elements, detailing the behavior while maintaining
states and their traceability. The goal is to specify and check an integrated system and
its behavior that would otherwise be either unspecified or emergent depending on the
level of development. The method developed follows this process:

1. Define types of states providing information on the system at its own level of
granularity.

2. Define simple and complex constraints between the values of different types of
states to correlate the information.

3. Define enabling circumstances of the system use cases using the system states.

4. Check all states constraints and use cases preconditions.

5. Generate the structure of modes.

6. Build the system description and behavior models.

Once an integrated model of the system is obtained, more V&V activities can be
performed, such as simulation. The model evolves by adding the system elements (such
as the subsystems), their description (states) and their behavior (modes). The states of
the system remains the same (unless they were ill-specified) but can now be deducted
from lower level information. This requires specifying new state machine managing the
evolution of the system states. The behavior of the system can be changed so that some
of its mechanisms are now detailed in the system elements’ behaviors.

6.5.2 Traceability

The information expressed by the states can evolve internally through deduction among
types of states. For example, the train operability state depends on the train energy
supply state. There needs to be states machines managing the evolution of the operability
states depending on the energy supply states. They also can be modified by the behavior
or be communicated by the environment. The use cases, however, express interaction
with the system processed through its behavior, and do not directly change the system
state. This way, both the behavior and the actions on the system can evolve and be
detailed without modifying the description of the system.

CHAPTER 6. BEHAVIOR VERIFICATION METHOD AND MODEL 139

Information is managed through the states and properly defined in each system
elements. Dependencies between information is managed through control states. Infor-
mation is traced among levels of abstraction not by being refined but by being expressed
in the right system element at its local level of abstraction.

Chapter 7

Conclusion

In this chapter, we analyze the main contributions of this thesis and consider the gains
obtained. We compare them to the needs expressed by BT and conclude on future
perspectives.

7.1 Contributions synthesis

7.1.1 Concepts of states and modes

We present here a synthesis of the contribution defining the concepts of states and modes,
presented in the chapter 4.

States and modes : summary

We provided a definition of states and modes as concepts that can be used in different
languages and semantics, and hinted at their usefulness in specifying and designing the
system behavior.

We now have:

• Concepts characterizing the system and linked to model elements (N 3.1.).

• A clarification of the concepts of state and modes (N 3.1.1-4.).

• A way to express information at the SOI’s level of granularity and abstraction
(N 3.4.).

140

CHAPTER 7. CONCLUSION 141

• Shared information that goes beyond the scope of one engineer’s work (N 3..

• A way to specify dynamic aspects of the behavior (N 1.).

What does this definition means for BT?

These definitions are prerequisites for the rest of the work. They ensure a common
understanding of the basic concepts for modeling, which can improve communication et
cooperation betweens BT engineering teams.

The definitions of states and modes enable functional engineers to correctly specify
the use of a train in an operational context. The lack of a way to properly define and
manage such information led to the development of useless functions. This in turn
directed the engineers to create flawed validation plan from ill-specified or irrelevant
scenarios. The solution proposed accelerates the creation of a validation plan.

What does this definition means for MBSE?

The interest for MBSE is much more pronounced, as it is a solid base for the formalism
and the design of existing and future methods. The current work aims to eliminate the
ambiguity on those abstract terms, which are frequently used in the field.

The workshops conducted in BT provided a positive feedback on the proposed defini-
tions. These definitions were also presented at an international conference [95], where re-
searchers and engineers agreed on the intent and usefulness of providing such definitions.
The type of executable model presented is intended to be the base of the development
of MIL in BT. The definitions provided are a proposal to solve the challenge identified
at C 7 and provide a basis for C 4.

7.1.2 Model verification method

One of the main needs of BT was the definition of a method to improve the quality
of the collaborative work of the engineers during the modeling process, as expressed in
N 3. and N 3.3..

Model verification method : summary

The method developed ensures that the roles for the design and approval of the model
verification rules are well defined. The verification rules can then be implemented us-

CHAPTER 7. CONCLUSION 142

ing the OCL language and will ensure that the model remains consistent through its
specification during the modeling stage, satisfying the needs N 2. and N 2.3.

The method also describes how the participants should interact and ensure that
they do so using shared semantics to prevent ambiguity and interpretation errors, which
corresponds to the needs N 3. and N 3.2..

What does this model verification method means for BT?

The implementation of this method allows to perform automatic and efficient V&V
activities on the model and accelerates the system development process with less time
consumed on reviews of the model. The solution proposed has been tested, deployed and
validated, and is now in use. The use of shared semantics and reusable rules package
allows to recycle large parts of work between projects. This reusability is a major gain,
as it saves time and ensures that the good practices from previous experience are reused.

Regarding the need for model verification, the solution has now been deployed on
six projects, in Europe and India. It has been concluded that this solution enabled to
replace a three-month review process done manually by engineers. This corresponds to
an average saving of 1500 hours of work for each project. The amount of errors detected
and corrected is about 2000 on average.

What does this model verification method means for MBSE?

Information regarding specifications and system concepts can now be expressed and
traced in the models. Knowledge concerning the system can be contained in the models
and not just in the engineers’ minds. Having information correctly expressed and traced
can also avoid some redundancy in the specification.

We provided a way to enforce modeling rules to properly define and keep track of
the information in models created following a modeling method and a profile. We now
have:

• An automatic verification solution for specification teams to check the information
in their models.

• A way to check models so the information they contain can be used for V&V
activities.

• A way to define the new concepts static semantics in the expression and manipu-
lation of model elements according to the method.

CHAPTER 7. CONCLUSION 143

• A way to enforce traceability of information across requirements and modeling
elements in and between development steps along the design process.

• A way to share and communicate information through a same way of expressing
and understanding models.

7.1.3 Behavior verification method and model

Behavior verification method and model: summary

The third contribution provides both a verification method for the whole behavior and
a way to model it. The verification method enables to define simple and complex con-
straints which restrict the model’s possible states. These constraints are used to define
the system behavior N 1.. Constraints are used to calculate all possible state configura-
tions of the train, checking that specifications and expectations regarding the evolution
of the system are consistent, answering the needs N 2. and N 2.2..

States are used to define the preconditions of the use cases, satisfying the need
N 1.3.. The preconditions are checked regarding the constraints and used to define a
structure of modes to model the behavior, answering the needs N 1.2. and N 1.4.. The
activation status of all modes can be deduced from a single evaluation of each condition
used in modes and use cases preconditions, enabling to consider and then specify dynamic
aspects. This corresponds to the need N 1.1..

The definition of these constraints is made at a high level of abstraction and are
forwarded during the different stage of the modeling, which ensures traceability of the
requirements. Simple and complex constraints, use cases preconditions and modes are
specifications that will be used for the rest of the development, as they do not characterize
a design but the behavior that any design has to induce. This answer the needs N 2.1.,
N 2.3., N 3. and N 3.3.

What does this solution means for BT?

This method allows automatics V&V activities on the system specifications and prevents
conceptual errors. The constraint specification system is very simple, yet it is efficient
enough to detect multiple anomaly types.

The main gain is the possibility to correlate information and check the behavior as a
whole. Engineers use a same, formalized information to make specifications, which are
automatically checked. The solution was tested on the full information of a real project,
MOVIA Maxx, after the current V&V process was performed. It appeared that the

CHAPTER 7. CONCLUSION 144

constraints and preconditions provided by engineers still contained errors. Nearly all
preconditions of the use cases had unused values, and more importantly there were use
case preconditions that were not satisfied by any state configuration, meaning that the
specification contained critical errors that could not be detected at this step by existing
solutions in BT.

The solution proposed is also interesting regarding the re-utilization of models and
specifications by providing context. Indeed, taking information from a previous project
with missing information regarding the modes can be detrimental.

What does this solution means for MBSE?

Our results helped proving that our definition of system states enables to specify the
system and its behavior, its evolution and the conditions under which use cases can be
performed. The most direct benefit of this work is a means to check the preconditions of
the use cases, not just individually but as part of a constrained whole. The simplicity of
the solution makes it available to any engineer working on use case specification and can
be easily integrated in an existing method, process or tool. One of the gains expressed
by the BT engineers who experimented our approach was that preconditions were clearer
but more importantly centralized, and instead of repeating similar information and pre-
conditions in many requirements, this information is expressed by the same elements,
the states.

The generation of a structure of modes enables us to integrate the behavioral models
developed in each of the scopes of study. Those models can be transformed into exe-
cutable models. We also have constraints and properties that have to be checked using
these models. This enables to conduct V&V activities on the whole system behavior,
which was the main goal of this thesis.

7.2 Impact of the global solution

7.2.1 Progress toward the overall objective of BT

BT’s objective is to have a continuous validation of a train system behavior along its
development process. We saw that the definition of the behavior, its integrated specifi-
cations and the validation criteria were missing. The object of this thesis was to identify
those issues and provides solutions.

We created a method to specify and integrate a system behavior while enabling
its validation. It satisfies the requirements listed in the chapter 2, as shown in their

CHAPTER 7. CONCLUSION 145

summaries.

7.2.2 Consequences on BT

The implementation of the three contribution has several impacts on the existing method.
It could be summarized as an improvement over the existing process. The definitions
of the abstract concept of modes and states allow a clearer communication betweens
the services and making their cooperation easier. The method proposed to design new
integrated system aims to make all contributions to the model more efficient, as the
information is centralized, shared and verified more easily. The two last contribution have
also a measurable impact on the V&V process, as a large part of the verification activities
can be automated and reduce the scope where an expert intervention is required.

All these improvements lead to a more optimal process, which takes less time, ensures
a better synergy betweens services and improves the V&V efficiency, as shown by the
quantitative gains mentioned before.

7.2.3 Consequences on MBSE

The way the contributions work toward solving the research challenges presented in the
introduction are presented here:

C 1 Having an integrated model of the system at the early stage of design.

We have used the concepts of states and modes to describe a system and its behavior,
without relying on a design or an architecture of functions, subsystems or components.

C 2. Making Use of SysML elements to specify requirements regarding the system
behavior.

We presented how SysML elements could be used to define states and modes, al-
lowing to specify the behavior. Being independent from a design, they can be used as
requirements for an implementation.

C 3. Anticipating and/or managing emergence phenomenon in the behavior.

We defined simple and complex constraints in order to reduce the amount of possible
configurations, and hence the possible reactions of a train system.

CHAPTER 7. CONCLUSION 146

C 4. Formalizing, completing and standardizing information in the specifications.

The use of verification rules supported by a method enables to properly implement a
modeling method as part of a development process. This enforces a semantics associated
to the modeling elements. The definition of states and modes has enabled engineers to
work on the same information when creating scenarios and preconditions.

C 5. Integrating and applying V&V solutions in the overall development and modeling
process.

The challenge here was to provide a MIL solution to complete BT V&V process.
We have provided a way to create models as well as validations requirements. The
verification rules and the verification method can be considered as part of the V&V
process.

C 6. Expressing and continuously checking system properties through different or
evolving models.

The system properties have been expressed through the definitions of constraints, be
they simple or complex. As these constraints are defined on states that are part of the
global system specifications, they remain relevant along the development process. While
this thesis does not cover the actual use of these properties across the whole development
process, it is assumed to be simple enough considering the solutions available.

C 7. Supporting the MBSE approach by a formal ontology

Our definition of states and modes is an effort toward establishing an ontology for
MBSE. We argue that they are core concepts needed to represent a system and its
behavior. Having rules to enforce the semantics in models contributes to formalize the
concepts they express.

7.3 Future work

7.3.1 Remaining work to be done in the company

Modeling methods in BT, especially regarding the operability where it is new, still have
to be developed and completed. While we provide definitions of states and modes and

CHAPTER 7. CONCLUSION 147

their application, they still have to be implemented in the official modeling method. A
new team in Canada has been put in charge of developing the new modeling method at
the end of the thesis and has been given the solutions and comments presented here as
inputs.

The new specifications and means of verification and integration have to be deployed
in actual projects, something prevented until now by the scale of the effort required and
the need to have a finished, validated solution before attempting to deploy it. Verifi-
cation rules were a particular case, as they were the first to be developed, followed a
whole process of test and validation, and supported the development without requiring
additional efforts from the engineers or a change in the methods.

As the verification rules are currently deployed and used in the company, it is becom-
ing necessary to create a proper organization following the roles detailed in the method.
A centralized team developing and managing verification rules will be created, with des-
ignated method experts working with projects managers deciding on the rules packages
to be allocated to each project. The team developing the rules could then develop solu-
tion to quickly generate more complex rules, enabling to dynamically develop validation
rules at the request of validation experts reviewing the models. An estimated team of
five to ten people could be constituted, depending on the rate at which the solution is
deployed and used.

Executable models have to be integrated in the current co-simulation solution in BT,
for which the process has already been started and depends in part on external providers.
Once the models can be implemented in a co-simulation, a full MIL analysis will have
to be conducted. Engineers are working on developing the co-simulation solution in
BT. Their method has been reviewed based on the analysis presented here. A one-
year postdoctoral position could be created to implement the executable models and
integration method into this co-simulation. Developing model checking solutions on
the co-simulation would be investigated. The creation of SysML executable models for
a whole project would require three or four people trained to the new methods and
solutions.

The solutions presented increase the reutilization capabilities of models and spec-
ifications regarding operational and functional aspects. To improve re-usability even
further, BT wishes for a modeling approach based on building blocks. There is a need
to develop a framework to develop models to reuse only part of a model.

The functional behavior of the train can now be well specified and well tested. The
next step would be to define a way to properly define, verify and validate the train
physical performances through the parametrization of models.

CHAPTER 7. CONCLUSION 148

7.3.2 Research challenge follow-up and perspectives

The work presented relates to several research challenges, as presented earlier. The
main contributions of this work are based on the definition of the concepts of states
and modes. It participates in defining a formal system ontology in MBSE but does not
achieve it. Concepts such as system, models, verification and validation can have various
definitions. It is currently not possible to cite one source as a reference, the standards
providing variations of definition rather than unifying ones.

As we considered challenges regarding ontology, modeling method and means of
integration, we head toward the next challenge presented in the INCOSE roadmap:
the need for distributed and secure model repositories crossing multiple domains. The
integrated information in our models ought to be referenced from a central place across
projects, domains and development steps, something that has not been considered yet.

The use of OCL rules to enforce an ontology and a semantics is a current field of
research. We performed verification on SysML models, and provided some bases to
implement an ontology and semantics associated to a SysML profile. A generalized
solution enabling such an endeavor could be investigated.

This work aims to trigger the MBSE community and particularly the SysML working
group in upcoming conference workshops to consider V&V more in detail in future
SysML versions (e.g., 2.0) in order to solve industrial adoption challenges from a language
perspective. The SysML V2 working group [96] states that the next version of SysML
should enable a concise representation of the concepts and be able to validate that the
model is logically consistent. It should also be highly adaptable and customizable in
regard of domain specific concepts. This thesis constitutes a first step in this direction.
It has been adapted to the railway system but could be generalized.

Lastly, a new project conducted in BT company has to be considered, regarding the
development of an artificial intelligence. The goal is to develop an autonomous train.
In order to do that, functional engineers have to specify the behavior of the AI agent,
as it has to reproduce a train driver behavior. Some security constraints that have been
empirically enforced through physical separation of commands in the train, as well as
the training of a human driver, do no longer apply. There is a need to model, specify
and constrain a train behavior and that of its driver as inputs to the development of an
artificial intelligence. The present work offers a solution that was not available before in
BT and will be necessary in these new endeavors.

Bibliography

[1] ISO/IEC/IEEE 24765: 2017(E): ISO/IEC/IEEE International Standard -
Systems and software engineering–Vocabulary. IEEE, 2017. [Online]. Available:
https://books.google.fr/books?id=NS02tAEACAAJ

[2] L. E. Hart, “Introduction to model-based system engineering (MBSE) and SysML,”
in Delaware Valley INCOSE Chapter Meeting, Ramblewood Country Club, Mount
Laurel, New Jersey, 2015.

[3] OMG, “OMG Systems Modeling Language (OMG SysMLTM) Version 1.4,” 2015.
[Online]. Available: http://www.omg.org/spec/SysML/1.4/

[4] S. Friedenthal and M. Sampson, “INCOSE IW 2014 MBSE Workshop.” Jan. 2014.

[5] M. Chami, P. Oggier, O. Naas, and M. Heinz, “Real World Application
of MBSE at Bombardier Transportation,” in The Swiss Systems Engineering
Day (SWISSED 2015), Kongresshaus Zurich, 8th September 2015. [Online].
Available: http://ssse.ch/sites/default/files/page images/%3Cem%3EEdit%
20Basic%20page%3C/em%3E%20SWISSED%202015/MBSE%20at%20BT%20-%
20SWISSED2015%20-%2020150908%20-%20V1 1.pdf

[6] ISO/IEC/IEEE 15288: 2015(E): ISO/IEC/IEEE International Standard - Systems
and Software Engineering: Software Life Cycle Processes. IEEE, 2015. [Online].
Available: https://ieeexplore.ieee.org/servlet/opac?punumber=4475823

[7] J. G. Lamm and T. Weilkiens, “Functional Architectures in SysML,” Proceedings
of the Tag des Systems Engineering (TdSE ‘10). Munich, Germany, 2010. [Online].
Available: https://www.researchgate.net/profile/Tim Weilkiens/publication/
267802862 Functional Architectures in SysML/links/558bb23208ae02c9d1f967bf.
pdf

[8] R. J. Abbott, “Emergence and systems engineering: putting complex systems to
work,” in Symposium on Complex Systems Engineering, RAND Corporation, Santa
Monica, CA, 2007, pp. 11–12.

149

https://books.google.fr/books?id=NS02tAEACAAJ
http://www.omg.org/spec/SysML/1.4/
http://ssse.ch/sites/default/files/page_images/%3Cem%3EEdit%20Basic%20page%3C/em%3E%20SWISSED%202015/MBSE%20at%20BT%20-%20SWISSED2015%20-%2020150908%20-%20V1_1.pdf
http://ssse.ch/sites/default/files/page_images/%3Cem%3EEdit%20Basic%20page%3C/em%3E%20SWISSED%202015/MBSE%20at%20BT%20-%20SWISSED2015%20-%2020150908%20-%20V1_1.pdf
http://ssse.ch/sites/default/files/page_images/%3Cem%3EEdit%20Basic%20page%3C/em%3E%20SWISSED%202015/MBSE%20at%20BT%20-%20SWISSED2015%20-%2020150908%20-%20V1_1.pdf
https://ieeexplore.ieee.org/servlet/opac?punumber=4475823
https://www.researchgate.net/profile/Tim_Weilkiens/publication/267802862_Functional_Architectures_in_SysML/links/558bb23208ae02c9d1f967bf.pdf
https://www.researchgate.net/profile/Tim_Weilkiens/publication/267802862_Functional_Architectures_in_SysML/links/558bb23208ae02c9d1f967bf.pdf
https://www.researchgate.net/profile/Tim_Weilkiens/publication/267802862_Functional_Architectures_in_SysML/links/558bb23208ae02c9d1f967bf.pdf

BIBLIOGRAPHY 150

[9] B. Haskins, J. Stecklein, B. Dick, G. Moroney, R. Lovell, and J. Dabney, “8.4.2 error
cost escalation through the project life cycle,” INCOSE International Symposium,
vol. 14, pp. 1723–1737, 06 2004.

[10] M. Debbabi, F. Hassäıne, Y. Jarraya, A. Soeanu, and L. Alawneh, Verification and
Validation in Systems Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010. [Online]. Available: http://link.springer.com/10.1007/978-3-642-15228-3

[11] IEEE, 1012-2012 IEEE Standard for System and Software Verification and Val-
idation. [Online]. Available: http://ieeexplore.ieee.org/servlet/opac?punumber=
6204024

[12] L. van Ruijven, “Ontology for Systems Engineering as a base for MBSE,”
INCOSE International Symposium, vol. 25, no. 1, pp. 250–265, Oct. 2015. [Online].
Available: http://doi.wiley.com/10.1002/j.2334-5837.2015.00061.x

[13] M. Chami and J.-M. Bruel, “A Survey on MBSE Adoption Challenges,” Sector
Systems Engineering Conference (INCOSE EMEASEC 2018), p. 16, 2018.

[14] M. D. Ingham, R. D. Rasmussen, M. B. Bennett, and A. C. Moncada, “Engineering
complex embedded systems with state analysis and the mission data system,”
Journal of Aerospace Computing, Information, and Communication, vol. 2, no. 12,
pp. 507–536, 2005. [Online]. Available: https://doi.org/10.2514/1.15265

[15] J.-R. Abrial, Modeling in Event-B: system and software engineering. Cambridge;
New York: Cambridge University Press, 2010, oCLC: 646068815.

[16] Thiago Rocha Silva, “A behavior-driven approach for specifying and testing
user requirements in interactive systems,” PhD Thesis, Université de Toulouse,
Université Toulouse III-Paul Sabatier, 2018. [Online]. Available: http://thesesups.
ups-tlse.fr/3940/

[17] A. Benveniste, B. Caillaud, and D. e. a. Nickovic, “Contracts for Systems Design:
Theory,” Inria Rennes Bretagne Atlantique ; INRIA, Research Report RR-8759,
Jul. 2015. [Online]. Available: https://hal.inria.fr/hal-01178467

[18] M. Soeken and R. Drechsler, Formal Specification Level. Cham: Springer
International Publishing, 2015. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-08699-6

[19] A. Salado and P. Wach, “Constructing True Model-Based Requirements in
SysML,” Systems, vol. 7, no. 2, p. 19, Mar. 2019. [Online]. Available:
https://www.mdpi.com/2079-8954/7/2/19

[20] Y. Mordecai and D. Dori, “Model-based requirements engineering: Architecting
for system requirements with stakeholders in mind,” in 2017 IEEE International
Systems Engineering Symposium (ISSE). Vienna, Austria: IEEE, Oct. 2017, pp.
1–8. [Online]. Available: http://ieeexplore.ieee.org/document/8088273/

http://link.springer.com/10.1007/978-3-642-15228-3
http://ieeexplore.ieee.org/servlet/opac?punumber=6204024
http://ieeexplore.ieee.org/servlet/opac?punumber=6204024
http://doi.wiley.com/10.1002/j.2334-5837.2015.00061.x
https://doi.org/10.2514/1.15265
http://thesesups.ups-tlse.fr/3940/
http://thesesups.ups-tlse.fr/3940/
https://hal.inria.fr/hal-01178467
http://link.springer.com/10.1007/978-3-319-08699-6
http://link.springer.com/10.1007/978-3-319-08699-6
https://www.mdpi.com/2079-8954/7/2/19
http://ieeexplore.ieee.org/document/8088273/

BIBLIOGRAPHY 151

[21] Mike Ryan, Stephen Cook, and William R. Scot, “Application of MBSE
to requirements engineering - Research challenges,” Systems Engineering/Test
and Evaluation Conference, 2013. [Online]. Available: https://ro.uow.edu.au/
eispapers/6335/

[22] R. Fujimoto, C. Bock, W. Chen, E. Page, and J. H. Panchal, Research challenges
in modeling and simulation for engineering complex systems. Springer, 2017.

[23] Mikel D. Petty, “Modeling and Validation Challenges for Complex Systems,” in
Engineering Emergence A Modeling and Simulation Approach, 2011.

[24] Eric Vugrin, Timothy Trucano, Laura Swiler, Patrick Finley, Tatiana Flanagan,
Asmeret Naugle, Jeffrey Tsao, and Stephen Verzi, “Recommend Research Direc-
tions for Improving the Validation of Complex Systems Models,” Sandia National
Laboratories, Tech. Rep., 2017.

[25] L. Lemazurier, V. Chapurlat, and A. Grossetête, “An MBSE Approach to Pass
from Requirements to Functional Architecture,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 7260 – 7265, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2405896317319183

[26] Emmanouela Stachtiari, Anastasia Mavridou, Panagiotis Katsaros, Simon Bliudze,
and Joseph Sifakis, “Early Validation of System Requirements and Design Through
Correctness-by-Construction,” 2018.

[27] Catherine Dubois, Michalis Famelis, Martin Gogolla, Leonel Nobrega, Ileana Ober,
Martina Seidl, and Markus Völter, “Research Questions for Validation and Veri-
fication in the Context of Model-Based Engineering,” International Workshop on
Model Driven Engineering, Verification and Validation - MoDeVVA 2013, 2014.

[28] “Work breakdown structure, 000454 (BT internal document).”

[29] M. F. Michael Bogaert, Francis Tison, “Functional design training (BT internal
document).”

[30] J. Yao, “0r 1 Operability Concept (BT internal document).”

[31] E. Hull, K. Jackson, and J. Dick, Requirements engineering, 3rd ed. London ; New
York: Springer, 2011.

[32] AIAA, ANSI/AIAA G-043 A-2012 Guide to the Preparation of Operational
Concept Documents. ANSI, 2012. [Online]. Available: https://webstore.ansi.org/
standards/aiaa/ansiaiaa043a2012

[33] A. C. Ouafa Baizigue, Jerome Canipel, “Functional methodology using tools (BT
internal document).”

[34] E. Doba, “Vehicle Platform SysML Modelling Methodology (BT internal docu-
ment).”

https://ro.uow.edu.au/eispapers/6335/
https://ro.uow.edu.au/eispapers/6335/
http://www.sciencedirect.com/science/article/pii/S2405896317319183
http://www.sciencedirect.com/science/article/pii/S2405896317319183
https://webstore.ansi.org/standards/aiaa/ansiaiaa043a2012
https://webstore.ansi.org/standards/aiaa/ansiaiaa043a2012

BIBLIOGRAPHY 152

[35] N. H. Cyril Jonvel, “Vehicle Functional Architecture Modelling Methodology (BT
internal document).”

[36] M. C. O. Naas, “MBSE training course (BT internal document).”

[37] C. S. Wasson, System engineering analysis, design, and development: Concepts,
principles, and practices, 2016, oCLC: 949896718.

[38] J. Karl-Heinz and M. TiegelKamp, “IEC61131-3 Programming Industrial
Automation Systems.” [Online]. Available: http://www.dee.ufrj.br/controle
automatico/cursos/IEC61131-3 Programming Industrial Automation Systems.pdf

[39] MODELISAR and Modelica, “Functional Mock-up Interface for Model
Exchange and Co-Simulation V2.0,” Jul. 2014. [Online]. Avail-
able: https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI for
ModelExchange and CoSimulation v2.0.pdf

[40] T. Weilkiens, SYSMOD - The Systems Modeling Tool-
box - Pragmatic MBSE with SysML, 2016. [Online]. Avail-
able: https://www.researchgate.net/publication/311772243 SYSMOD - The
Systems Modeling Toolbox - Pragmatic MBSE with SysML 2nd edition

[41] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, T. M. Shortell, and
International Council on Systems Engineering, Eds., Systems engineering handbook:
a guide for system life cycle processes and activities ; INCOSE-TP-2003-002-04,
2015, 4th ed. Hoboken, NJ: Wiley, 2015, oCLC: 931708827.

[42] D. Long and Z. Scott, A primer for model-based systems engineering,
2011. [Online]. Available: http://www.ccose.org/media/upload/MBSE Primer
2ndEdition full Vitech 2011.10.pdf

[43] T. Weilkiens, J. G. Lamm, S. Roth, and M. Walker, Model-based system architecture,
ser. Wiley series in systems engineering and management. Hoboken, New Jersey:
Wiley, 2016, oCLC: 953572265.

[44] T. Cziharz, P. Hruschka, S. Queins, and T. Weyer, “Handbook of Requirements
Modeling According to the IREB Standard,” p. 115, 2016.

[45] T. Fayolle, “Specifying a train system using astd and the B method : Technical
Report,” LACL, Laboratoire d’Algorithmique, Complexité et Logique, Tech. Rep.,
2014.

[46] D. Kaslow, G. Soremekun, H. Kim, and S. Spangelo, “Integrated model-based
systems engineering (MBSE) applied to the Simulation of a CubeSat mission,”
in 2014 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, Mar. 2014, pp.
1–14. [Online]. Available: http://ieeexplore.ieee.org/document/6836317/

http://www.dee.ufrj.br/controle_automatico/cursos/IEC61131-3_Programming_Industrial_Automation_Systems.pdf
http://www.dee.ufrj.br/controle_automatico/cursos/IEC61131-3_Programming_Industrial_Automation_Systems.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://www.researchgate.net/publication/311772243_SYSMOD_-_The_Systems_Modeling_Toolbox_-_Pragmatic_MBSE_with_SysML_2nd_edition
https://www.researchgate.net/publication/311772243_SYSMOD_-_The_Systems_Modeling_Toolbox_-_Pragmatic_MBSE_with_SysML_2nd_edition
http://www.ccose.org/media/upload/MBSE_Primer_2ndEdition_full_Vitech_2011.10.pdf
http://www.ccose.org/media/upload/MBSE_Primer_2ndEdition_full_Vitech_2011.10.pdf
http://ieeexplore.ieee.org/document/6836317/

BIBLIOGRAPHY 153

[47] R. Karban, A. Crawford, G. Trancho, M. Zamparelli, S. Herzig, I. Gomes,
E. Brower, and M. Piette, “The OpenSE Cookbook: a practical, recipe
based collection of patterns, procedures, and best practices for executable
systems engineering for the Thirty Meter Telescope,” in Modeling, Systems
Engineering, and Project Management for Astronomy VIII, G. Z. Angeli and
P. Dierickx, Eds. Austin, United States: SPIE, Jul. 2018, p. 31. [Online].
Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/
10705/2312281/The-OpenSE-Cookbook--a-practical-recipe-based-collection-of/
10.1117/12.2312281.full

[48] Jean-Marie Gauthier, Fabrice Bouquet, Ahmed Hammad, and Fabien Peureux,
“Tooled Process for Early Validation of SysML Models using Modelica Simulation,”
2015.

[49] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Junghanns,
J. Mau\s s, M. Monteiro, T. Neidhold, D. Neumerkel, and others, “The
functional mockup interface for tool independent exchange of simulation models,”
in Proceedings of the 8th International Modelica Conference; March 20th-22nd;
Technical Univeristy; Dresden; Germany. Linköping University Electronic Press,
2011, pp. 105–114. [Online]. Available: http://www.ep.liu.se/ecp/article.asp?
issue=063&volume=&article=13

[50] U. Wurstbauer, M. Herrnberger, A. Raufeisen, and V. Fä\s sler, Efficient
Development of Complex Systems using a Unified Modular Approach. Deutsche
Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, Bonn, 2015. [Online].
Available: http://www.dglr.de/publikationen/2015/370201.pdf

[51] Y. A. Feldman, L. Greenberg, and E. Palachi, “Simulating Rhapsody SysML
Blocks in Hybrid Models with FMI,” Mar. 2014, pp. 43–52. [Online]. Available:
http://www.ep.liu.se/ecp/article.asp?issue=096%26article=4

[52] R. S. Moura and L. A. Guedes, “Simulation of Industrial Applications using
the Execution Environment SCXML.” IEEE, Jul. 2007, pp. 255–260. [Online].
Available: http://ieeexplore.ieee.org/document/4384765/

[53] M. Chen, X. Qin, H.-M. Koo, and P. Mishra, System-Level Validation.
New York, NY: Springer New York, 2013. [Online]. Available: http:
//link.springer.com/10.1007/978-1-4614-1359-2

[54] H. Graves, “Current State of ontology in engineering systems,” OMG, Tech. Rep.,
2012. [Online]. Available: http://www.omgwiki.org/MBSE/doku.php?id=mbse:
ontology

[55] U. A\s smann, S. Zschaler, and G. Wagner, “Ontologies, meta-models,
and the model-driven paradigm,” in Ontologies for software engineering
and software technology. Springer, 2006, pp. 249–273. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-34518-3 9

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10705/2312281/The-OpenSE-Cookbook--a-practical-recipe-based-collection-of/10.1117/12.2312281.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10705/2312281/The-OpenSE-Cookbook--a-practical-recipe-based-collection-of/10.1117/12.2312281.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10705/2312281/The-OpenSE-Cookbook--a-practical-recipe-based-collection-of/10.1117/12.2312281.full
http://www.ep.liu.se/ecp/article.asp?issue=063&volume=&article=13
http://www.ep.liu.se/ecp/article.asp?issue=063&volume=&article=13
http://www.dglr.de/publikationen/2015/370201.pdf
http://www.ep.liu.se/ecp/article.asp?issue=096%26article=4
http://ieeexplore.ieee.org/document/4384765/
http://link.springer.com/10.1007/978-1-4614-1359-2
http://link.springer.com/10.1007/978-1-4614-1359-2
http://www.omgwiki.org/MBSE/doku.php?id=mbse:ontology
http://www.omgwiki.org/MBSE/doku.php?id=mbse:ontology
http://link.springer.com/chapter/10.1007/3-540-34518-3_9

BIBLIOGRAPHY 154

[56] D. Price, A. B. Feeney, and A. Jones, “A Semantic Framework for Systems
Engineering Standards,” INCOSE International Symposium, vol. 23, no. 1,
pp. 1256–1270, Jun. 2013. [Online]. Available: http://doi.wiley.com/10.1002/j.
2334-5837.2013.tb03084.x

[57] D. B. Matthews, “Semantic Web Technologies,” Semantic Web Technologies, p. 21,
2005.

[58] A. Baruzzo and M. Comini, “Static verification of UML model consistency,” in
3rd Workshop on Model Design and Validation (MoDeV2a). Citeseer, 2006, pp.
111–126.

[59] M. Gogolla and F. Hilken, “Model validation and verification options in a contem-
porary UML and OCL analysis tool,” Modellierung 2016, 2016.

[60] A. Hafeez and A. u. Rehman, “Ontology Based Verification of UML
Class/OCL Model,” Mehran University Research Journal of Engineering and
Technology, vol. 37, no. 4, pp. 521–534, Oct. 2018. [Online]. Available:
http://publications.muet.edu.pk/index.php/muetrj/article/view/560

[61] D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette, S. Jenkins, and
M. Ingham, “An ontology for State Analysis: Formalizing the mapping to SysML,”
in 2012 IEEE Aerospace Conference. Big Sky, MT: IEEE, Mar. 2012, pp. 1–16.
[Online]. Available: http://ieeexplore.ieee.org/document/6187335/

[62] Ludwig von Bertalanffy, General System Theory, 1968.

[63] K. M. Adams and T. J. Meyers, “Systems theory: a formal construct for under-
standing systems,” International Journal of System of Systems Engineering, vol. 2,
no. 2-3, pp. 163–192, 2011.

[64] K. M. Adams and J. H. Mun, “The application of systems thinking and systems the-
ory to systems engineering,” in Proceedings of the 26th National ASEM Conference:
Organizational Transformation: Opportunities and Challenges, vol. 10. American
Society for Engineering Management Rolla, MO, 2005, pp. 493–500.

[65] J. Martin, J. B. SE, G. C. AUT, D. Hybertson, R. Martin, H. S. UK, J. Singer,
M. Singer, and T. T. JP, “Team 4: Towards a Common Language for Systems
Praxis,” International Federation For Systems Research, p. 75, 2012.

[66] J. Singer, H. Sillitto, J. Bendz, G. Chroust, D. Hybertson, H. Law-
son, J. Martin, R. Martin, M. Singer, and T. Takaku, “The Systems
Praxis Framework,” in Systems and Science at Crossroads – Sixteenth IFSR
Conversation, ser. SEA-SR-32. Linz, Austria: Inst. f. Systems Engineer-
ing and Automation, Johannes Kepler University, September 2012, pp.
89–90. [Online]. Available: http://www.ifsr.org/index.php/category/archives/
ifsr-conversations;printablebrochureavailablefromhttp://systemspraxis.org

http://doi.wiley.com/10.1002/j.2334-5837.2013.tb03084.x
http://doi.wiley.com/10.1002/j.2334-5837.2013.tb03084.x
http://publications.muet.edu.pk/index.php/muetrj/article/view/560
http://ieeexplore.ieee.org/document/6187335/
http://www.ifsr.org/index.php/category/archives/ifsr-conversations; printable brochure available from http://systemspraxis.org
http://www.ifsr.org/index.php/category/archives/ifsr-conversations; printable brochure available from http://systemspraxis.org

BIBLIOGRAPHY 155

[67] J.-L. Le Moigne, La théorie du système général: théorie de la modélisation. jean-
louis le moigne-ae mcx, 1994.

[68] D. Ing, “Rethinking Systems Thinking: Learning and Coevolving with the World.”
vol. 30, no. 5, 2013.

[69] R. Descartes and G. Gröber, Discours de la méthode: 1637. Heitz, 1905.

[70] L. Pazzi, “Modeling Systemic Behavior by State-Based Holonic Modular
Units,” in Model-Driven Engineering Languages and Systems, J. Dingel,
W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, Eds. Cham: Springer
International Publishing, 2014, vol. 8767, pp. 99–115. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-11653-2 7

[71] G. Guizzardi, “Ontological foundations for structural conceptual models,” Ph.D.
dissertation, Centre for Telematics and Information Technology, Telematica
Instituut, Enschede, The Netherlands, 2005, oCLC: 225528610. [Online]. Available:
https://www.inf.ufes.br/∼gguizzardi/OFSCM.pdf

[72] OMG, “OMG Unified Modeling Language (UML) Version 2.5.1,” 2017. [Online].
Available: https://www.omg.org/spec/UML/2.5.1/PDF

[73] A. Naumenko, “Triune Continuum Paradigm: a paradigm for General System Mod-
eling and its applications for UML and RM-ODP,” 2002.

[74] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in Formal
methods for the design of real-time systems. Springer, 2004, pp. 200–236. [Online].
Available: http://link.springer.com/10.1007%2F978-3-540-30080-9 7

[75] E. Börger and R. Stärk, Abstract state machines: a method for high-level system
design and analysis. Springer Science & Business Media, 2003.

[76] C. S. Wasson, “System Phases, Modes, and States Solutions to Controversial Is-
sues,” Wasson Strategics, LLC. http://www. wassonstrategics. com, 2010.

[77] A. M. Olver and M. J. Ryan, “On a Useful Taxonomy of Phases, Modes, and States
in Systems Engineering,” Systems Engineering / Test and Evaluation Conference
SETE2014, Apr. 2015.

[78] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of com-
puter programming, vol. 8, no. 3, pp. 231–274, 1987.

[79] SMC Systems Engineering Primer & Handbook, 2005.

[80] J.-L. Voirin, Model-based System and Architecture Engineering with the Arcadia
Method. ISTE Press - Elsevier, 2018.

http://link.springer.com/10.1007/978-3-319-11653-2_7
https://www.inf.ufes.br/~gguizzardi/OFSCM.pdf
https://www.omg.org/spec/UML/2.5.1/PDF
http://link.springer.com/10.1007%2F978-3-540-30080-9_7

BIBLIOGRAPHY 156

[81] J. Jenney, “Define Life Cycle System Modes,”
http://themanagersguide.blogspot.com/2011/01/6322-define-life-cycle-system-
modes.html, 2011.

[82] M. Chami, A. Aleksandraviciene, A. Morkevicius, and J.-M. Bruel, “Towards
Solving MBSE Adoption Challenges: The D3 MBSE Adoption Toolbox,” INCOSE
International Symposium, vol. 28, no. 1, pp. 1463–1477, Jul. 2018. [Online].
Available: http://doi.wiley.com/10.1002/j.2334-5837.2018.00561.x

[83] S. Bonnet, D. Exertier, and V. Normand, “Not (strictly) relying on SysML
for MBSE: language, tooling and development perspectives,” 2015, oCLC:
255348295. [Online]. Available: http://download.polarsys.org/capella/publis/
IEEE Capella SysML paper.pdf

[84] K. Berkenkotter, “OCL-based Validation of a Railway Domain Profile,” 2006,
oCLC: 248918751. [Online]. Available: https://st.inf.tu-dresden.de/OCLApps2006/
topic/acceptedPapers/11 Berkenkotter ValidationDomainProfile.pdf

[85] I. Dragomir, I. Ober, and C. Percebois, “Contract-based modeling and
verification of timed safety requirements within sysml,” Software and System
Modeling, vol. 16, no. 2, pp. 587–624, 2017. [Online]. Available: https:
//doi.org/10.1007/s10270-015-0481-1

[86] O. M. G. Specification, “Object Contraint Language V.2.4,” Object Management
Group pct/07-08-04, Feb. 2014. [Online]. Available: http://www.omg.org/spec/
OCL/2.4/

[87] Eclipse - Papyrus Guide, “Validate (ocl) constraints of a profile.” [Online].
Available: https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.papyrus.
dsml.validation.doc%2Ftarget%2Fgenerated-eclipse-help%2Fdsml-validation.html

[88] Sparx Systems, “Model Validation,” 2016. [Online]. Available: https://www.
sparxsystems.fr/resources/user-guides/model-domains/model-validation.pdf

[89] No Magic Documentation, “Creating validation rules - MagicDraw 18.2.” [Online].
Available: https://docs.nomagic.com/display/MD182/Creating+validation+rules

[90] M. Altenhofen, T. Hettel, and S. Kusterer, “OCL support in an industrial environ-
ment,” 2006. [Online]. Available: http://www-st.inf.tu-dresden.de/OCLApps2006/
topic/acceptedPapers/03 Altenhofen OCLSupport.pdf

[91] R. Delmas, A. F. Pires, and T. Polacsek, “A verification and validation process
for model-driven engineering,” C. Vallet, D. Choukroun, C. Philippe, G. Balas,
A. Nebylov, and O. Yanova, Eds. EDP Sciences, 2013, pp. 455–468. [Online].
Available: http://www.eucass-proceedings.eu/10.1051/eucass/201306455

[92] P. Baracos, Grafcet step by step. Famic Automation, Incorporated, 1992.

http://doi.wiley.com/10.1002/j.2334-5837.2018.00561.x
http://download.polarsys.org/capella/publis/IEEE_Capella_SysML_paper.pdf
http://download.polarsys.org/capella/publis/IEEE_Capella_SysML_paper.pdf
https://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/11_Berkenkotter_ValidationDomainProfile.pdf
https://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/11_Berkenkotter_ValidationDomainProfile.pdf
https://doi.org/10.1007/s10270-015-0481-1
https://doi.org/10.1007/s10270-015-0481-1
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.papyrus.dsml.validation.doc%2Ftarget%2Fgenerated-eclipse-help%2Fdsml-validation.html
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.papyrus.dsml.validation.doc%2Ftarget%2Fgenerated-eclipse-help%2Fdsml-validation.html
https://www.sparxsystems.fr/resources/user-guides/model-domains/model-validation.pdf
https://www.sparxsystems.fr/resources/user-guides/model-domains/model-validation.pdf
https://docs.nomagic.com/display/MD182/Creating+validation+rules
http://www-st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/03_Altenhofen_OCLSupport.pdf
http://www-st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/03_Altenhofen_OCLSupport.pdf
http://www.eucass-proceedings.eu/10.1051/eucass/201306455

BIBLIOGRAPHY 157

[93] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley, 2001.
[Online]. Available: http://faraday.fie.umich.mx/∼rrusiles/Fie/Horizontal/
Hopcroft Introduction to Automata Theory Languages and Computation.pdf

[94] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, ser. Universi-
text. New York, NY: Springer New York, 2012.

[95] R. Baduel, J. Bruel, I. Ober, and E. Doba, Definition of states and modes as
general concepts for system design and validation. HAL, 2018. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01989427

[96] OMG, “SysML v2 RFP Working Group.” [Online]. Available: http://www.
omgwiki.org/

http://faraday.fie.umich.mx/~rrusiles/Fie/Horizontal/Hopcroft_Introduction_to_Automata_Theory_Languages_and_Computation.pdf
http://faraday.fie.umich.mx/~rrusiles/Fie/Horizontal/Hopcroft_Introduction_to_Automata_Theory_Languages_and_Computation.pdf
https://hal.archives-ouvertes.fr/hal-01989427
http://www.omgwiki.org/
http://www.omgwiki.org/

Annexes

The annexes contains three elements, each relevant to one of the contribution.

Operation modes

The first page contains a standard in development in BT, that expresses the different
”operation modes” to be used in BT. This document is analyzed in the chapter 2, showing
issues in the way modes and the information they contain are expressed. This highlights
the need for properly defined concepts of states and modes, which is the contribution
presented in chapter 4.

Sample of the documented verification rules

The two pages following the first show parts of the verification rules developed and
documented for BT, as part of the contribution presented in chapter 5. It can be seen
on the columns that a classification system has been created to manage the rules by
specifying their types, the scopes where they are to be applied and their status. The
status indicate if the rules are to be developed, to be tested, to be allocated to a package,
are ready to use, or deprecated.

Behavior verification and mode generation script

The last 13 pages show the code of the script used in the chapter 6. This script enables to
check specifications regarding the system and its behavior for errors, as well as generating
a structure of modes to create an integrated model of the system behavior.

158

BIBLIOGRAPHY 159

F
ig

u
re

7.
1:

O
p

er
at

io
n

m
o
d

es
[3

0]

Name

Constrained

Element Validation Scope Status Rule Type Abbreviation Severity Error Message

1 2F_FA_FunctionalBlock_Provide

s Activities

BT Functional

Block [Class]

Functional

Analysis

ready traceability FuncBlock_Provide

Activity

error A Functional Block provides

at least one Activity

2 2F_FA_FunctionalBlock_Satisfy

a Requirement

BT Functional

Block [Class]

Functional

Analysis

ready traceability FuncBlock_Satisfie

sRequirement

error A Functional Block satisfies

at least one requirement

3 2F_FA_FunctionalBlock_Compos

e or Aggregate a Functional

Context

BT Functional

Block [Class]

Functional

Analysis

ready traceability FuncBlock_FuncCo

ntext

error A Functional Block should

be aggregated or compose a

Functional Context
4 2F_FA_FunctionalContext_Owns

an IBD

BT Functional

Context [Class]

Functional

Analysis

ready traceability FuncContext_IBD error A Functional Context in

2F_FA should contain at

least one IBD
5 2F_FA_FunctionalContext_Com

posed or Aggregated by

Functional Block

BT Functional

Context [Class]

Functional

Analysis

ready traceability FuncContext_Func

Block

error A Functional Context in

2F_FA should contain at

least one Sequence Diagram

6 2F_FA_FunctionalContext_Owns

a Sequence Diagram

BT Functional

Context [Class]

Functional

Analysis

ready traceability FuncContext_SeqD

iag

error A Functional Context in

2F_FA should contain at

least one Sequence Diagram

7 2F_FA_Messages_All messages

in SD should contain a

functional signal

Message Operational

Analysis

ready content SeqDiag_Msg_Sign

al

error All messages in the SD

should contain a functional

signal
8 2F_OA_Messages_All messages

in SD should contain an

operational signal

Message Operational

Analysis

ready content SeqDiag_Msg_Sign

al

error All messages in the SD

should contain an

operational signal
9 2F_OA_Actor_Aggregated by an

Operational Context

Actor Operational

Analysis

ready traceability Actor_OpContext error An Actor in 2F_OA should

be aggregated by at least

one Operational Context
10 2F_OA_Actor_Association to a

Use Case

Actor Operational

Analysis

ready traceability Actor_UseCase warning An Actor in 2F_OA should

be associated to a Use Case

11 2F_FA_IBD_Owned By a

Functional Context

Diagram Functional

Analysis

ready traceability IBD_OpContext error An IBD in 2F_FA should be

contained by a Functional

Context
12 2F_OA_IBD_Owned By an

Operational Context

Diagram Operational

Analysis

ready traceability IBD_OpContext error An IBD in 2F_OA should be

contained by an Operational

Context
13 2F_OA_OperationalBlock_Aggre

gated by an Operational Context

BT Operational

Block [Class]

Operational

Analysis

ready traceability OpBlock_OpConte

xt

error An Operational Block should

be aggregated by at least

one Operational Context

14 2F_OA_OperationalContext_Agg

regates an Operational Block

BT Operational

Context [Class]

Operational

Analysis

ready traceability OpContext_OpBloc

k

error An Operational Context in

2F_OA should aggregate a

single Operational Block
15 2F_OA_OperationalContext_Agg

regates an Actor

BT Operational

Context [Class]

Operational

Analysis

ready traceability OpContext_Actor error An Operational Context in

2F_OA should aggregate at

least one Actor
16 2F_OA_OperationalContext_Ow

ns an IBD

BT Operational

Context [Class]

Operational

Analysis

ready traceability OpContext_IBD error An Operational Context in

2F_OA should contain at

least one IBD
17 2F_OA_OperationalContext_Ow

ns a Sequence Diagram

BT Operational

Context [Class]

Operational

Analysis

ready traceability OpContext_SeqDia

g

error An Operational Context in

2F_OA should contain at

least one Sequence Diagram

18 2F_FA_Requirement_Satisfied

by a Functional Block

BT Requirement

[Class]

Functional

Analysis

ready traceability Req_FunctionalBlo

ck

error A requirement in 2F_FA

should be satisfied by a

Functional Block
19 2F_OA_Requirement_is

Satisfied by a Use Case

BT Requirement

[Class]

Operational

Analysis

ready traceability Req_UseCase error A requirement in 2F_OA

should be satisfied by a Use

Case

Method Validation Rules

20 2F_FA_SequenceDiagram_Owne

d by a Functional Context

Interaction Functional

Analysis

ready traceability SeqDiag_FuncCont

ext

error A Sequence Diagram in

2F_FA should be contained

by a Functional Context

21 2F_OA_SequenceDiagram_Own

ed by an Operational Context

Interaction Operational

Analysis

ready traceability SeqDiag_OpConte

xt

error A Sequence Diagram in

2F_OA should be contained

by an Operational Context

22 2F_OA_SequenceDiagram_Has a

documentation

Interaction Operational

Analysis

ready content SeqDiag_Doc warning A Sequence Diagram in

2F_OA should have a

documentation
23 2F_FA_Signal_Allocated to a

Technical Signal

BT Functional

Signal [Signal]

Functional

Analysis

ready traceability Signal_AllocationT

oTechnical

error A signal in 2F_FA should be

allocated to a technical

signal
24 2F_FA_Signal_Has a Functional

stereotype

Signal Functional

Analysis

ready content Signal_Func_Stere

otype

error A signal in 2F_FA should

have a functional

stereotype
25 2F_OA_Signal_Has an

Operational stereotype

Signal Operational

Analysis

ready content Signal_Oper_Stere

otype

error A signal in 2F_OA should

have an operatonal

stereotype
26 2F_TA_Signal_Has a Functional

Signal allocated to it

BT Technical

Signal [Signal]

Technical

Analysis

ready traceability Signal_FuncSignal

Allocated

error A signal in 2F_TA should

havev a funcctional signal

allcoated to it
27 2F_OA_Signal_Name begin by R,

I, C or Stat

BT Operational

Signal [Signal]

Operational

Analysis

ready content Signal_Name error A signal name in 2F_OA

should begin by either "R",

"I", "C" or "Stat".
28 2F_OA_InformationFlow_Reque

st Signal direction

InformationFlow Operational

Analysis

ready content Signal_R_Direction error A signal which name begin

by "R" is always linked to a

flow that goes from an

Actor to an Operational

Block.
29 2F_OA_TrainActivity_Same

name as Use Case owner

Activity Operational

Analysis

ready traceability TrainAct_UC_Nam

e

warning A Train Activity should have

the same name as the Use

Case that contains it.

30 2F_OA_UseCase_Owns a single

Train Activity

BT Use Case

[UseCase]

Operational

Analysis

ready traceability UseCase_TrainAct error A Use case in 2F_OA should

contain a single Train

Activity bearing the same

name
31 2F_OA_UseCase_Satisfy a

Requirement

BT Use Case

[UseCase]

Operational

Analysis

ready traceability UseCase_Req error A Use case in 2F_OA should

satisfy a requirement

32 2F_OA_UseCase_Associated to

an Actor

BT Use Case

[UseCase]

Operational

Analysis

ready traceability UseCase_Actor error A Use Case should be

associated to an Actor

33 2F_OA_UseCase_Has

documentation defined

BT Use Case

[UseCase]

Operational

Analysis

ready content UseCase_Docume

ntation

error A Use Case should have a

documentation

34 2F_OA_SequenceDiagram_All

SD should contain Pre-

conditions

Interaction Operational

Analysis

ready content SeqDiag_Precondit

ions

warning Each Sequence Diagram

shall contain Pre-conditions

35 2F_OA_OperationalContext_Co

nsist linked to Actors through

ports

BT Operational

Context [Class]

Operational

Analysis

ready traceability OpBlock_Port and

Actor

error In a given Operational

Context, the only

connexions are between

actors and ports of the

Operational Block
36 2F_OA_OperationalContext_Co

nnector unicity

BT Operational

Context [Class]

Operational

Analysis

ready multiplicity OpContext_Conne

ctor_Unicity

error In a given Operational

Context, there are only one

connector and port per

actor interacting with the

SOI
37 2F_OA_Use case has

triggerSignal

BT Triggered Use

Case [UseCase]

Operational

Analysis

ready content UCTriggerSignal error The use case has no trigger

signal. [Remedy: Set the

trigger signal.]

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

###

IMPORT LIBRARIES

###

library (ggplot2)
library ("factoextra")
library (e1071)
library (ade4)
library (philentropy)
library (gplots)
library (Hmisc)
library (igraph)
library (Corbi)
library (nem)
library (rlist)
library (data.table)

###

IMPORT DATA

###

Setting workspace

setwd ("C:/Users/rbaduel/Documents/Bombardier/Workspace/Rc luster")

Importing data and ensuring suitable variables ty pe

precondBrut <- data.frame (read.table ("StatesPreconditionsCleaned_V2.txt" , header = TRUE,
skipNul = TRUE, row.names = 1))
precondFull <- apply (precondBrut, c (1, 2), function (x) { (as.integer (x)) })

postcondBrut <- data.frame (read.table ("StatesPostconditionsCleaned_V0.txt" , header = TRUE,
skipNul = TRUE, row.names = 1))
postcondFull <- apply (postcondBrut, c (1, 2), function (x) { (as.integer (x)) })

configsBrut <- data.frame (read.table ("StateConstraintsCleaned_V3.txt" , header = TRUE, skipNul
= TRUE, row.names = 1))

configs <- apply (configsBrut, c (1, 2), function (x) { (as.integer (x)) })

complexConstBrut <- data.frame (read.table ("ComplexStateConstraintsCleaned_V0.txt" , header =
TRUE, skipNul = TRUE, row.names = 1))
complexConst <- apply (complexConstBrut, c (1, 2), function (x) { (as.integer (x)) })

###

DEFINE VARIABLES

###

Remove duplicates cancelled to ease the repartiti on of functions in scopes
#dupl <- precondFull[duplicated(precondFull),]
#
elDupl <- !duplicated(precondFull)&duplicated(pre condFull, fromLast = TRUE)
#
precond <- precondFull[!duplicated(precondFull),]
#
precond -> precondFull

precond <- precondFull

Group preconditions and state constraints by stat e types

stateSep <- c(2, 3, 2, 3, 6, 4, 3, 3, 3, 2, 4, 3, 3, 2, 2)

-1-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

parts <- partition.matrix (precond, colsep =stateSep)

confParts <- partition.matrix (configs, colsep =stateSep)

Group use case by scopes

foncSep <- c(6, 6, 5, 2, 5, 4, 5, 5, 2, 2, 2, 3, 2, 5)

scopes <- partition.matrix (precondFull, rowsep =foncSep)

Define state constraint graph

gConf <- as.undirected (graph.adjacency (configs))

Define list of possible configurations according to simple constraints

confList <- cliques (gConf, min = 15)

###

FUNCTIONS: MODES

###

filterStateDep <- function(listStatePart){

GIVEN: a list of preconditions partitionned by st ate types
DO: return a list of the state values state types expressing at least one constraint
in the matrix

staTypDep <- vector ()

for(i in c(1:length (listStatePart)))
{

if (any (listStatePart [[i]]==0))
{

staTypDep <- c(staTypDep , colnames (listStatePart [[i]]))
}

}
return (staTypDep)

}

getImplicMatrix <- function(precondMat){

GIVEN: a precondition matrix
DO: return a matrix of the implications between t he preconditions

Make a list of authorized state values for each p recondition in the matrix

authStates <- vector ("list" , nrow (precondMat))

for(i in c(1:nrow (precondMat)))
{

iStates <- vector ()
for (k in c(1:ncol (precondMat)))
{

if (precondMat [i,k] == 1)
{

iStates <- c(iStates, k)
}

}

authStates [[i]] <- iStates
}

Compare authorized values between each pair of pr econdition

implicMat <- matrix (0, length (authStates), length (authStates))

for (i in c(1:(length (authStates))))

-2-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

{
for (j in c(1:length (authStates)))
{

if((i != j)&(length (setdiff (authStates [[i]],authStates [[j]])) == 0))
{

implicMat [i,j] = 1
}

}
}
rownames (implicMat) = rownames (precondMat)
colnames (implicMat) = rownames (precondMat)

return (implicMat)
}

getNoImply <- function(implicMat){

GIVEN: an implication matrix
DO: return elements that do not imply any other

imply <- vector ()

for (i in c(1:nrow (implicMat)))
{

if(any (c(implicMat [i,])==1))
{

imply <- c(imply , i)
}

}
noImply <- c(setdiff (c(1:nrow (implicMat)), imply))
return (noImply)

}

getNotImplied <- function(implicMat){

GIVEN: an implication matrix
DO: return elements that are not implied by any o ther

implied <- vector ()

for (i in c(1:ncol (implicMat)))
{

if(any (c(implicMat [,i])==1))
{

implied <- c(implied , i)
}

}
notImplied <- c(setdiff (c(1:ncol (implicMat)), implied))
return (notImplied)

}

getAbstModes <- function(precondMat){

GIVEN: a matrix of modes preconditions without im plications
DO: return a precondition matrix of abstract mode s

nAsbtMode <- (nrow (precondMat)*(nrow (precondMat)-1)/2)
abstModMat <- matrix (0L, nrow = nAsbtMode, ncol = ncol (precondMat))
colnames (abstModMat) <- colnames (precondMat)

k <- 1

for(i in c(1:(nrow (precondMat)-1)))
{

for(j in c((i +1):(nrow (precondMat))))
{

for(z in c(1:ncol (precondMat)))
{

if(precondMat [i,z] == precondMat [j,z])
{

abstModMat [k,z] = precondMat [i,z]

-3-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

} else {
abstModMat [k,z] = 1

}
}

k <- k+1
}

}

abstModMat <- abstModMat [!duplicated (abstModMat),]
return (abstModMat)

}

getStructureMode <- function(precondMat,implicMat){

GIVEN: a precondition matrix and the linked impli cation matrix
DO: return a structure of modes based on constra ints

Generate abstract modes

abstModMat <- getAbstModes (precondMat)
colnames (abstModMat) <- colnames (precondMat)

concatAbstModMat <- abstModMat

while(!is.null (nrow (abstModMat)))
{

concatAbstModMat <- rbind (concatAbstModMat,abstModMat)
abstModMat <- getAbstModes (abstModMat)

}
rownames (concatAbstModMat) <- paste ("Abstract mode " , 1:nrow (concatAbstModMat))
concatModes <- rbind (precondMat,concatAbstModMat)
concatModes <- concatModes [!duplicated (concatModes),]

Remove intermediary abstract modes, so that only those directly linked to an original
mode remain

impStruct <- getImplicMatrix (concatModes)
redImpStruct <- transitive.reduction (impStruct)

nbModes <- nrow (precondMat)

absModeImplicToKeep <- vector ()
absModeImpliedToKeep <- vector ()

for(i in c((nbModes+1):nrow (redImpStruct)))
{

if(any (c(redImpStruct [i, (1:nbModes)])==1))
{

absModeImplicToKeep <- c(absModeImplicToKeep,i)
}
if(any (c(redImpStruct [(1:nbModes),i])==1))
{

absModeImpliedToKeep <- c(absModeImpliedToKeep,i)
}

}

absModeToKeep <- union (absModeImplicToKeep,absModeImpliedToKeep)

toKeep <- c((1:nbModes),absModeToKeep)

concatModes <- concatModes [toKeep,]

return (concatModes)
}

###

-4-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

FUNCTIONS: STATES

###

checkConstraints <- function(constMat,stateSep){

GIVEN: a constraint matrix and a vector indicatin g its separation in state types
DO: check that each state value in the constraint matrix is compatible with at least
one value of every other type of state

constMatParts <- partition.matrix (constMat, colsep =stateSep)

for (i in c(1:(nrow (constMat))))
{

for (j in c(2:(length (constMatParts))))
{

if (any (c(constMatParts [[j]][i,])==1)==FALSE)
{

cat ("Missing possible case between state value " , row.names (constMat)[i], "
and set of state values " , colnames (constMatParts [[j]]), "\n")

}
}

}
}

getFalseConfListByComplexConst <- function(confList,complexConst, stateSep){

GIVEN: a list of state values configurations, a m atrix expressing complex
constraintsand a vector indicating its separation i n state types
DO: return incompatible configurations according to complex constraints

comConstP <- partition.matrix (complexConst, colsep =stateSep)

falseConfList <- vector ()

for (i in c(1:nrow (complexConst)))
{

constVals <- vector ()
for (j in c(1:ncol (complexConst)))
{

if (complexConst [i,j]==1)
{

constVals <- c(constVals, j)
}

}

for (k in c(1:length (confList)))
{

occur <- match (confList [[k]], V (gConf))
if(length (intersect (constVals, occur)) == typesConst)
{

falseConfList <- c(falseConfList, k)
}

}
}

return (falseConfList)
}

checkStateValueInConf <- function(stateValues, confList){

GIVEN: a list of states values and a list of poss ible configurations
DO: check that every state value exists in at lea st one possible configuration, and
return the list of unused states

unusedStates <- stateValues

for (i in c(1:length (confList)))
{

-5-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

unusedStates <- setdiff (unusedStates , confList [[i]])
}

if(length (unusedStates) != 0)
{

for(i in c(1:length (unusedStates)))
{

cat ("No configurations using state value: " ,V (gConf)[unusedStates [i]]$name, "\n")
}

}

return (unusedStates)
}

checkNearSolutionsSimpConst <- function(constMat,unusedStates){

GIVEN: a simple constraint matrix and a lsit of u nused state values in the possible
configuraiton it expresses
DO: Check types of state that are lacking in conf igurations that are nearest to a
solution for state values that lack a possible conf iguration.

for (i in c(1:length (unusedStates)))
{

incompStates <- vector ()
for (j in c(1:ncol (constMat)))
{

if(configs [unusedStates [i],j]==0)
{

incompStates <- c(incompStates, j)
}

}

reduceConf <- submatrix (constMat, incompStates, incompStates)
redConfG <- as.undirected (graph.adjacency (reduceConf))
redConfSols <- max_cliques (redConfG, min = 14)
if (length (redConfSols) == 0)
{

cat ("Simple constraint: more than one missing state typ e for a configuration
with" , row.names (configs)[unusedStates [i]], "\n")

} else {
redSolsF <- setdiff (V(redConfG), Reduce (union , redConfSols))
cat ("Simple constraint: unresolved state value for a co nfigurations with " ,
row.names (configs)[unusedStates [i]], ": " , row.names (reduceConf [redSolsF,]), "\n")

}
}

}

###

FUNCTIONS: PRECONDITIONS

###

checkPrecond <- function(precondMat, stateSep){

GIVEN: a precondition matrix and a vector indicat ing its separation in state types
DO: Check that each precondition has at least one authorized value for every type of
state

parts <- partition.matrix (precondMat, colsep =stateSep)

for (i in c(1:(nrow (precondMat))))
{

for (j in c(1:(length (parts))))
{

if (any (c(parts [[j]][i,])==1)==FALSE)
{

cat ("Missing authorized value for use case" , row.names (precond)[i], ": " ,
colnames (parts [[j]]), "\n")

-6-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

}
}

}
}

Checking the existence of solutions for each acti on preconditions

authStates <- vector ("list" , nrow (precond))

errSol <- vector ()

possConf <- vector ("list" , nrow (precond))

for (i in c(1:nrow (precond)))
{

Checking that each action admits at least one sol ution

istates <- vector ()

for (k in c(1:ncol (precond)))
{

if (precond [i,k] == 1)
{

istates <- c(istates, k)
}

}

authStates [[i]] <- istates

iconf <- submatrix (configs, istates, istates)
iconfG <- as.undirected (graph.adjacency (iconf))
iconfSols <- cliques (iconfG, min = 15)

if (length (iconfSols) == 0)
{

cat ("Simple constraints: no solutions for action " , row.names (precond)[i], "\n")
errSol <- c(errSol, i)

} else {

Filter configurations according to complex constr aints

comConstP <- partition.matrix (complexConst, colsep =sep)
falseConfList <- vector ()

for (s in c(1:nrow (complexConst)))
{

typesConst = 0
for (d in c(1:length (comConstP)))
{

if (any (comConstP [[d]][s,])==1)
{

typesConst = typesConst + 1
}

}
constVals <- vector ()
for (f in c(1:ncol (complexConst)))
{

if (complexConst [s,f]==1)
{

constVals <- c(constVals, f)
}

}

for (g in c(1:length (iconfSols)))
{

occur <- match (iconfSols [[g]], V (gConf))
if(length (intersect (constVals, occur)) == typesConst)
{

-7-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

falseConfList <- c(falseConfList, g)
}

}
}
list.remove (iconfSols, falseConfList)

if (length (iconfSols) == 0)
{

cat ("Complex constraints: no solutions for use case " , row.names (precond)[i],
"\n")
errSol <- c(errSol, i)

} else {

stock possible configurations for each action

iconfSols2 <- vector ("list" , length (iconfSols))

for (z in c(1:length (iconfSols)))
{

iconfSols2 [[z]] <- istates [iconfSols [[z]]]
iconfSols2[[z]] <- colnames(precond[,istates[icon fSols[[z]]]])

}
possConf [[i]] <- iconfSols2

}
}

}

###

CHECK CONSTRAINTS

###

Checking that each state value is compatible with at least one value of every other type
of state

checkConstraints (configs, stateSep)

Checking the existence of configurations for each state value according to simple
constraints

unusedStates <- checkStateValueInConf (V(gConf), confList)

Checking the existence of configurations for each state value according to complex
constraints

falseConfList <- getFalseConfListByComplexConst (confList,complexConst, stateSep)

if (length (falseConfList) != 0){
compConfList <- confList
list.remove (compConfList, falseConfList)

unusedStates2 <- V(gConf)

unusedStates2 <- checkStateValueInConf (unusedStates2, compConfList)
}

###

CHECK PRECONDITIONS

###

Checking that each use case has at least one auth orized value for every type of state

checkPrecond (precond, stateSep)

-8-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

Checking the existence of solutions for each acti on preconditions

authStates <- vector ("list" , nrow (precond))

errSol <- vector ()

possConf <- vector ("list" , nrow (precond))

for (i in c(1:nrow (precond)))
{

Checking that each action admits at least one sol ution

istates <- vector ()

for (k in c(1:ncol (precond)))
{

if (precond [i,k] == 1)
{

istates <- c(istates, k)
}

}

authStates [[i]] <- istates

iconf <- submatrix (configs, istates, istates)
iconfG <- as.undirected (graph.adjacency (iconf))
iconfSols <- cliques (iconfG, min = 15)

if (length (iconfSols) == 0)
{

cat ("Simple constraints: no solutions for action " , row.names (precond)[i], "\n")
errSol <- c(errSol, i)

} else {

Filter configurations according to complex constr aints

comConstP <- partition.matrix (complexConst, colsep =sep)
falseConfList <- vector ()

for (s in c(1:nrow (complexConst)))
{

typesConst = 0
for (d in c(1:length (comConstP)))
{

if (any (comConstP [[d]][s,])==1)
{

typesConst = typesConst + 1
}

}
constVals <- vector ()
for (f in c(1:ncol (complexConst)))
{

if (complexConst [s,f]==1)
{

constVals <- c(constVals, f)
}

}

for (g in c(1:length (iconfSols)))
{

occur <- match (iconfSols [[g]], V (gConf))
if(length (intersect (constVals, occur)) == typesConst)
{

falseConfList <- c(falseConfList, g)
}

}
}
list.remove (iconfSols, falseConfList)

-9-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

if (length (iconfSols) == 0)
{

cat ("Complex constraints: no solutions for use case " , row.names (precond)[i],
"\n")
errSol <- c(errSol, i)

} else {

stock possible configurations for each action

iconfSols2 <- vector ("list" , length (iconfSols))

for (z in c(1:length (iconfSols)))
{

iconfSols2 [[z]] <- istates [iconfSols [[z]]]
iconfSols2[[z]] <- colnames(precond[,istates[icon fSols[[z]]]])

}
possConf [[i]] <- iconfSols2

}
}

}

Cleaning preconditions by removing unused values (values that don't/cannot appear in
possible configurations)

cleanPrecond <- matrix (0, nrow (precond), ncol (precond))
rownames (cleanPrecond) <- rownames (precond)
colnames (cleanPrecond) <- colnames (precond)
diffPrecond <- cleanPrecond

for (i in c(1:nrow (precond)))
{

if (!is.null (possConf [[i]]))
{

iStateUnion <- Reduce(union , possConf [[i]])
valDiff <- setdiff (authStates [[i]], iStateUnion)
cleanPrecond [i,iStateUnion]=1
diffPrecond [i,iStateUnion]=1
diffPrecond [i,valDiff]=2

}
}

Exporting new precondition matrix and one highlig hting differences compared to the original

write.csv (cleanPrecond, "cleanedPreconditions.csv")
write.csv (diffPrecond, "DeletedPreconditions.csv")

Find all functions that a given possible configur ations enable

actInConf <- vector ("list" , length (confList))

for (i in c(1:length (confList)))
{

vertConf <- Reduce(union , confList [[i]])
for (j in c(1:nrow (precond)))
{

if(length (setdiff (vertConf,authStates [[j]])) == 0)
{

actInConf [[i]] <- c(actInConf [[i]],j)
}

}
}

Write and export the coexistence matrix

coexist <- matrix (0, nrow (precond), nrow (precond))

for (i in c(1:length (actInConf)))
{

-10-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

for(j in c(1:length (actInConf [[i]])))
{

for (k in c(j :length (actInConf [[i]])))
{

m <- actInConf [[i]][j]
n <- actInConf [[i]][k]
if(m != n)
{

coexist [m,n] = 1
coexist [n,m] = 1

}
}

}
}

rownames (coexist) = rownames (precond)
colnames (coexist) = rownames (precond)

write.csv (coexist, "MatCoexistence.csv")

Write and export the implication matrix

implic <- matrix (0, nrow (precond), nrow (precond))

for (i in c(1:(nrow (precond))))
{

for (j in c(1:nrow (precond)))
{

if((i != j)&(length (setdiff (authStates [[i]],authStates [[j]])) == 0))
{

implic [i,j] = 1
}

}
}

rownames (implic) = rownames (precond)
colnames (implic) = rownames (precond)

reducedImplic <- transitive.reduction (implic)

write.csv (implic, "MatImplications.csv")
###

DEFINE MODES STRUCTURE

###

Generate modes englobing each scope (scope modes)

modesScope <- vector ("list" , length (scopes))
modScoMat <- matrix (0L, nrow = length (scopes), ncol = ncol (precond))
modNames <- vector ()
mode(modScoMat) <- "integer"
colnames (modScoMat) <- colnames (precond)

for(i in c(1:length (scopes)))
{

mode <- integer (ncol (precond))
for(j in c(1:ncol (precond)))
{

if (any (c(scopes [[i]][,j])==1))
{

mode[j] = 1
}

}
modesScope[[i]] <- mode
modScoMat[i,] <- mode
modNames <- c(modNames, paste ("Mode Scope" , i))

}

-11-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

rownames (modScoMat) <- modNames

Remove eventual duplicates in scopes modes

modScoMatRaw <- modScoMat
modScoMat <- modScoMat[!duplicated (modScoMat),]

Calcute the implication matrix for scope modes

impMod <- getImplicMatrix (modScoMat)

Simplify the implication matrix using transitivit y

redImpMod <- transitive.reduction (impMod)

Calcute matrix of scope modes and abstract modes

constTreeMod <- getStructureMode (modScoMat,redImpMod)

Calculate the implication matrix for the full lis t of modes

impStruct <- getImplicMatrix (constTreeMod)

Simplify the implication matrix using transitivit y

redImpStruct <- transitive.reduction (impStruct)

Plot the graph of the structure of modes

redImpStructG <- as.directed (graph.adjacency (redImpStruct))
laySugi <- layout_with_sugiyama (redImpStructG, hgap =80)
plot.igraph (redImpStructG, layout = laySugi $layout)

###

CASE STUDY: SCOPE 6

###

modScoSixPrec <- modScoMat[c(7:12),]
impScoSixPrec <- getImplicMatrix (modScoSixPrec)
redImpScoSix <- transitive.reduction (impScoSixPrec)
constTreeScoSixMod <- getStructureMode (modScoSixPrec,redImpScoSix)
impStructScoSix <- getImplicMatrix (constTreeScoSixMod)
redImpStructScoSix <- transitive.reduction (impStructScoSix)

redImpStructScoSixG <- as.directed (graph.adjacency (redImpStructScoSix))
laySugi <- layout_with_sugiyama (redImpStructScoSixG, hgap =80)
plot.igraph (redImpStructScoSixG, layout = laySugi $layout)

###

CASE STUDY: USE CASES MODES

###

Remove eventual duplicates in use case modes

precond <- precond [!duplicated (precond),]

Calcute the implication matrix for use case modes

impUseCase <- getImplicMatrix (precond)

Simplify the implication matrix using transitivit y

redImpUC <- transitive.reduction (impUseCase)

Calcute matrix of use case modes and abstract mod es

-12-

C:\Users\rbaduel\Documents\Bombardier\Workspace\Rcluster\Script_1.7.ModeStruct2.R vendredi 19 juillet 2019 10:31

constTreeUC <- getStructureMode (precond,redImpUC)

Calculate the implication matrix for the full lis t of modes

impStructUC <- getImplicMatrix (constTreeUC)

Simplify the implication matrix using transitivit y

redImpStructUC <- transitive.reduction (impStructUC)

Plot the graph of the structure of modes

redImpStructUCG <- as.directed (graph.adjacency (redImpStructUC))
laySugi <- layout_with_sugiyama (redImpStructUCG, hgap =80)
plot.igraph (redImpStructUCG, layout = laySugi $layout)

Get the list of types of states values constraini ng the scope modes

modScoPart <- partition.matrix (modScoMat, colsep =stateSep)

redStaTyp <- match (filterStateDep (modScoPart), colnames (precond))

modScoMatDep <- modScoMat[,redStaTyp]

Calcute the implication matrix for scope modes

impMod <- getImplicMatrix (modScoMat)

Trace the graph of implications between scope mod es

redImpModG <- as.directed (graph.adjacency (redImpMod))
laySugi <- layout_with_sugiyama (redImpModG, hgap =80)
plot.igraph (redImpModG, layout = laySugi $layout)

modScoSixPrec <- modScoMat[c(7:12),]
impScoSixPrec <- getImplicMatrix (modScoSixPrec)
redImpScoSix <- transitive.reduction (impScoSixPrec)

redImpScoSixG <- as.directed (graph.adjacency (redImpScoSix))
laySugi <- layout_with_sugiyama (redImpScoSixG, hgap =80)
plot.igraph (redImpScoSixG, layout = laySugi $layout)

-13-

	Introduction
	Context
	Needs
	Specify the train behavior
	Check the specifications for errors
	Enable communication of information between engineering teams
	Summary of needs

	Challenges
	Target
	Contributions
	Organization of the thesis

	I Problem analysis
	Context
	Bombardier Transport Modeling Method
	BT SysMM overview
	Operability
	System development at consist level

	Verification and validation process in BT
	Organization
	MIL: Cameo SysML
	SIL: Virtual Bird
	HIL: TRAIN0

	Needs analysis
	List of issues
	Derived needs

	State of the art
	Specifying the train behavior
	Checking the specifications for errors
	Enabling communication of information between engineering teams

	Contributions
	Concepts of states and modes
	Model verification method
	Behavior verification method and model

	Background: system theory and engineering
	System theory and definition
	System concept
	System representation
	Method

	Systems engineering
	System concept
	System representation
	Method

	Synthesis

	II Contributions
	Concepts of states and modes
	Concept of State
	State of the art
	Analysis
	Definition
	Example

	Concept of Mode
	State of the art
	Analysis
	Definition
	Example

	Application
	Definition of train states
	Definition of train modes
	Verification of the behavior

	Model verification method
	Models V&V
	Background on BT SysMM
	State of the art
	BT SysMM V&V
	Method Stakeholders
	V&V Method Overview
	Benefits

	Use case example

	Behavior verification method and model
	Presentation
	Context
	Issues
	Related works
	Method
	Case study

	Behavior description through states
	States in the case study
	State constraints
	State constraints in the case study
	Use case pre-conditions
	Use case pre-conditions in the case study

	Verification method
	State constraints verification
	Use case preconditions verification
	Results

	Execution model
	Holonic structure for states
	Structure of the behavior
	Structure of modes in the case study

	Synthesis
	Method
	Traceability

	Conclusion
	Contributions synthesis
	Concepts of states and modes
	Model verification method
	Behavior verification method and model

	Impact of the global solution
	Progress toward the overall objective of BT
	Consequences on BT
	Consequences on MBSE

	Future work
	Remaining work to be done in the company
	Research challenge follow-up and perspectives

