From meta-studies to modeling : using synthesis knowledge to build broadly applicable process-based land change models

Abstract : This paper explores how meta-studies can support the development of process-based land change models (LCMs) that can be applied across locations and scales. We describe a multi-step framework for model development and provide descriptions and examples of how meta-studies can be used in each step. We conclude that meta-studies best support the conceptualization and experimentation phases of the model development cycle, but cannot typically provide full model parameterizations. Moreover, meta-studies are particularly useful for developing agent-based LCMs that can be applied across a wide range of contexts, locations, and/or scales, because meta-studies provide both quantitative and qualitative data needed to derive agent behaviors more readily than from case study or aggregate data sources alone. Recent land change synthesis studies provide sufficient topical breadth and depth to support the development of broadly applicable process-based LCMs, as well as the potential to accelerate the production of generalized knowledge through model-driven synthesis.
Type de document :
Article dans une revue
Environmental Modelling \& Software, Elsevier, 2015, 72, pp.10-20
Liste complète des métadonnées

Littérature citée [93 références]  Voir  Masquer  Télécharger

https://hal-univ-tlse2.archives-ouvertes.fr/hal-01194535
Contributeur : Emilie Gil <>
Soumis le : lundi 7 septembre 2015 - 11:02:34
Dernière modification le : mercredi 23 mai 2018 - 17:58:03
Document(s) archivé(s) le : mardi 8 décembre 2015 - 11:12:54

Fichier

Maggliocca&al-published.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-01194535, version 1

Collections

Citation

Nicholas R. Magliocca, Jasper Van Vliet, Calum Brown, Tom P. Evans, Thomas Houet, et al.. From meta-studies to modeling : using synthesis knowledge to build broadly applicable process-based land change models. Environmental Modelling \& Software, Elsevier, 2015, 72, pp.10-20. 〈hal-01194535〉

Partager

Métriques

Consultations de la notice

409

Téléchargements de fichiers

221